PLANTRONICS Frederick Electronics

MODEL 1632 DEMODULATOR/

MODEL 1256 DISPLAY UNIT

MODEL 1632 DEMODULATOR

FEATURES

- Copies many CCITT compatible signals
- Copies with only one FSK tone
- Digitally controlled filters
- Fast setup with companion Model 1256

GENERAL

The Model 1632 is an extremely versatile Tone Demodulator which can be readily adjusted to receive signals from most of the FSK or on/off keyed, single or multichannel VFDM schemes presently in use. This versatility makes the device particularly well suited for surveillance, monitoring, and testing activities.

The Model 1632 chassis contains two complete demodulators, each with its own separate operating controls. Each demodulator has two bandpass filters whose center frequencies and bandpass widths are selectable. This latter feature permits independent detection of the mark and space tones which further increases the flexibility of the device, in that, as soon as one tone has been tuned, copying of data may begin. In the case of FSK, a search is then made for the cooperating tone. When located, the

GENERAL (cont.)

second tone enhances the performance of the unit.

The demodulators may be automatically and rapidly set up, to predetermined values, using the Model 1256 display unit. The Model 1256 is discussed on the following pages.

DESIGN

The Model 1632 is an all solid-state device housed in an aluminum cabinet, suitable for mounting in a standard 19-inch EIA rack. A vertical rack space of $3\frac{1}{2}$ inches is required.

The unit without options contains 16 printed circuit boards. Access is provided by a removable top cover. All operating controls and indicators are conveniently located on the front panel.

FREDERICK ELECTRONICS CORPORATION Hayward Road / Post Office Box 502 / Frederick, Maryland 21701 Telephone: (301) 662-5901 / Cable: FREDCO / Telex: 893438

DATE 2/76

APPLICATIONS

SIGNALING SCHEME

Some of the commonly encountered multichannel VFDM systems with which the Model 1632 is compatible are those which operate in accordance with CCITT Recommendations R31, R36, R37, R38-A, B and R39. The unit is also capable of demodulating on/off keying such as that covered by Recommendation R35.

Individual filters for center frequencies may be chosen in increments of either 30 Hz or 42.5 Hz, beginning at 300 Hz for the 30 Hz steps and 255 Hz for the 42.5 Hz spacing. Both of these modes have upper limits, which are detailed below. The bandpass filter widths which may be chosen are 10 Hz (for tuning only), 40 Hz, 55 Hz, 75 Hz, 105 Hz, 145 Hz, 200 Hz, and 275 Hz.

In addition to the exact center frequencies mentioned, many more "effective center frequencies" can be copied by selecting the closest exact center frequency and a wide bandpass. Single channel FSK is copied in this manner. IF signals are supplied from the output of a receiver, and the receiver has an adjustable BFO, then the exact center frequency is unimportant.

SPECIFICATIONS

DATA INPUTS

Using Front Panel Controls

 ΔF = 30 Hz 300 Hz to 5970 Hz ΔF = 42.5 Hz 255 Hz to 8457.5 Hz

Controlled from Model 1256

 $\Delta F = 30 \text{ Hz}$ 300 Hz to 4770 Hz $\Delta F = 42.5 \text{ Hz}$ 255 Hz to 6757.5 Hz

Maximum Baud Rate

300 baud or less depending upon bandpass used.

Input Level

+10 dbm to -40 dbm for 600 ohm circuit ly rms for 10k ohm circuit

Number of Inputs

Two inputs. Either or both demodulators may be switched to either input.

SPECIFICATIONS (cont.)

DATA OUTPUTS

Number of Outputs

Two outputs. One per demodulator or the demodulators may be connected together for a single, diversity output.

Output Circuit Configuration

Standard - Polar voltage (nominally ±6v) compatible with MIL-STD-188C or internally strappable for EIA-RS-232-C.

Optional - Plug-in neutral or polar dry contacts (up to 100 ma at 130 vdc) of solid-state optically isolated high level keyers.

POWER REQUIREMENTS

AC Power

115/230 vac ±10%, 47 to 400 Hz, 55 watts (without optional loop power supply).

OPTIONS

Power Supply

A plug-in power supply is available for use with high level keyers.

Remote Control Input

Consists of a 5-wire, low voltage cable from Model 1256.

PHYSICAL DESCRIPTION

Chassis Dimensions

19 inches (48.3 cm) wide 3_{2_2} inches (8.89 cm) high 20 inches (50.8 cm) deep

Weight

Approximately 20 pounds (9.07 kg)

Finish

Clear irridited aluminum chassis, front panel light gray with black filled engraved markings.

Operating Temperature

0° to +50°C ambient

MODEL 1256 DISPLAY UNIT

FEATURES

Programmable for various signaling schemes

- Displays status of up to 24 channels
- Provides rapid setup of Model 1632

GENERAL

The Model 1256 scans through a programmed set of frequencies, detects the presence or either a steady state tone or keyed signals at the chosen frequencies, and displays this information on its front panel.

The scanned frequencies are normally a set of tones which form a "Voice Frequency Division Multiplex" system such as those recommended by CCITT. An operator watching this display can readily determine which channels contain traffic. A remotely connected Model 1632 demodulator may be easily and quickly set up on an active channel using the controls of the Model 1256.

Mode switches permit selection of any of four preprogrammed, on/off keying (OOK) or frequency shift keying (FSK) tone frequency sets. Six individual inputs are provided and selection is made via a rotary switch. Up to six remote demodulators may be controlled. The addresses of these units are automatically inserted into the control signal format and are dependent upon the

GENERAL (cont.)

position of a front panel switch. Control instructions are sent to the demodulator whenever one of the channel switches is activated. In addition to the address data, the control instruction contains such information as center frequency and bandwidth of the tone filters and detection mode (i.e., OOK or FSK).

When an instruction has been sent, the channel number which the demodulator is to copy within a given frequency scheme, is displayed on the front panel. Selecting a new demodulator address causes the number of the channel, which that demodulator was last instructed to copy, to be displayed.

DESIGN

The Model 1256 is an all solid-state device housed in an aluminum cabinet for mounting in a standard EIA rack. The unit contains nine printed circuit boards. Access is provided by a removable top cover. All operating controls and indicators are conveniently located on the front panel.

APPLICATIONS

•

SIGNALING SCHEME AND PROGRAMMING

The Model 1256 is normally programmed for the following frequency schemes:

MODE 1 - 24 channels, on-off keyed beginning at 420 Hz and spaced at 120 Hz intervals (per CCITT R-35);

MODE 2 - 24 channels, ±30 Hz FSK beginning at 420 Hz and spaced at 120 Hz intervals (per CCITT R-31);

MODE 3 - 18 channels, ± 42.5 Hz FSK beginning at 425 Hz and spaced at 170 Hz intervals (per CCITT R-39);

MODE 4 - 9 channels, ± 85 Hz FSK beginning at 850 Hz and spaced at intervals of 340 Hz.

Programming for other frequency schemes is possible within some limitations (available by special order and quotation only).

SPECIFICATIONS

DATA INPUTS

Input Signals

MODE 1	00K	300-4110 Hz	
MODE 2	FSK	300-4110 Hz	Depending
MODE 3	FSK	255-5652.5 Hz	(on program
MODE 4	FSK	255-5652.5 Hz	

٦

Input Level

-40 dbm to +10 dbm

Number of Inputs

6 (switch selectable)

Input Impedance

10,000 ohms (balanced and isolated)

SPECIFICATIONS (cont.)

DATA INPUTS (cont.)

Frequency Increments

OOK - 30 Hz FSK - 30 Hz and 42.5 Hz thereof

Tone Channels

96 channels programmable in groups of 24

Interface To Demodulators

5-wire low voltage cable

POWER REQUIREMENTS

AC Power

115/230 vac ±10%, 47/400 Hz, 35 watts

PHYSICAL DESCRIPTION

Chassis Dimensions

19 inches (48.3 cm) wide 1-3/4 inches (4.4 cm) high 20 inches (50.8 cm) deep

Weight

Approximately 13 pounds (5.9 kg)

Finish

Clear irridited aluminum chassis, front panel light gray with black filled engraved markings

Operating Temperature

0° to 50°C ambient

ALL SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTIFICATION

MODEL 1632A VOICE FREQUENCY CARRIER TELEGRAPH DEMODULATOR (VFCTD)

INSTRUCTION MANUAL

March 1985

TMC41100

PROPRIETARY INFORMATION

s seense soon all

.. 17

This document contains Frederick Electronics Corporation proprietary data, and is not to be copied, reproduced, used or divulged to unauthorized persons, in whole or in part, without proper authorization in writing from Frederick Electronics. This information is the property of Frederick Electronics Corporation which reserves all rights to it.

PLANTRONICS/Frederick Electronics Corporation 7630 Hayward Road, P.O. Box 502 Frederick, Maryland 21701-0502

Printed In U.S.A.

.

PLANTRONICS/FREDERICK ELECTRONICS CORPORATION 7630 Hayward Road, P.O. Box 502 Frederick, Maryland 21701-0502

MANUAL ERRATA SHEET

EQUIP MODEL NO: 1632A	MANUAL MANUAL PART NO: TMC41100 DATE: MAR 85
REFERENCE	CORRECTION
Figure 6-16.	Item 6: Change MFR from SPRAGUE to KEMET. Change MFR P/N from 150D107X902082 to T310D107M020AS
ECN 6824	to T310D107X902082 SEP 85
PROBLEM :	Auto-Mark-Hold (AMH) does not function when the input is a Frequency Division Multiplexed (FDM) signal and when 16 or more tone pairs are being used.
CAUSE:	Nominal level of the AMH was previously set at -55 dBm. The AGC action on the input AMH is not low enough because the threshold is typically 10 dB below the peak power of the bandpass filter signal. When an FDM signal is applied each individual signal may be as much as 25 dB below the composite peak. If this is the case AMH would be engaged at all input levels where the composite peak is higher than 10 to 15 dB above a single tone pairs level.
SOLUTION:	Reduce the AMH Threshold as follows - Set to -60 dBm for single tone pair operation. This will produce nominal threshold levels which would be equivalent to -40 dBm for a full composite (24) tone pairs. -APR 86

.

.

SECTION					PAGE
I	1.1	DUCTION Purpose Physical	of Equips Descript	nent tion	1-1 1-1
	1.3	Specific	cations		1-1
II	TNOMA	T T A T T ON			
11	2.1	LLATION General			2-1
	2.2	Unpackir	ng and Ins	spection	2-1
	2.3	Power Re	quirement	ts	2-2
	2.4	Mounting	ng and Ins equirement		2-2
	25	Signal (CONNECTION	19	2-2
	2.6	Rear Par	nel Contro L Adjustme	bls	2-5
	2.7				2-5
		2.7.1		tor Board	2-5
				Mark Diversity Offset	
				Space Diversity Offset Auto Mark-Hold	, 2-1
			2.1.1.5	Threshold	2-7
		2.7.2	Synthesia	zer Board	2-7
		20702		Mark Mixer Balance	2-7
				Space Mixer Balance	2-9
		2.7.3	Time Base	e Board	2-9
				Loop Delay Clock	2-9
		2.7.4	Computer	Control	2-9
				Unit Select	2-9
				Remote Input Threshold	
		2.7.5		oply Board	2-9
			2.7.5.1	Low Level Output	2-9
				Polarity	2-9
III	OPERA	TION			
		General			3-1
			s and Ind	icators	3-1
	3.3	Operatio			3-3
		3.3.1		tor Controls	3-3
				AMH ON/OFF Switch	3-3
			3.3.1.2	F Switch	3-4
			3.3.1.3		3-4
			3.3.1.4	Mark Frequency	2 4
			2 2 1 5	Switches	3-4
			3.3.1.5	Space Frequency Switch	3-4 3-5
			3.3.1.6	Key Indicators NOR/MK/REV Switch	3-5
			3.3.1.8	Mode Switch	3-5
		3.3.2		y Operation	3-5
		J + J + 4		1 Shoracton	5 5

i

SECTION

V

•

PAGE

IV	THEORY	OF OPER	RATION	
	4.1	General		4-1
	4.2	Function	al Description	4-1
	4.3	Detailed	I Functional Analysis	4-3
		4.3.1	Input Circuits	4-3
		4.3.2	Demodulator Unit	4-3
			4.3.2.1 Synthesizer	4-5
			4.3.2.2 Bandpass Filter	4-7
			4.3.2.3 Demodulator	4-9
		4.3.3	Power Supply and Low	
			Level Keyer	4-11
		4.3.4	Time Base Unit	4-11
			Front Panel Control	4-11
		4.3.6	Switching and Connector	
			Circuits	4-11
		4.3.7	Computer Control Logic	4-12
		4.3.8	High Level Keyers	4-15

MAINTENANCE5-15.1General5-15.2Preventive Maintenance5-15.3Corrective Maintenance5-25.3.1Required Test Equipment5-25.3.2Troubleshooting5-35.3.2.1Local/Remote Circuit5-45.4Functional Testing5-4

VI SCHEMATIC DIAGRAMS

VII PART REPLACEMENT DRAWINGS

FIGURE

.

1-1	Model 1632A Voice Frquency Carrier Demodulator
2-1	Model 1632A Rear Panel
2-2	Model 1632A Internal View
2-3	Maximum Excursions
2-4	Sine Wave Eye Patterns
4-1	Simplified Block Diagram, Model 1632A VFCTD
4-2	Block Diagram, Input/AGC
4-3	Block Diagram, Frequency Synthesizer
4-4	Block Diagram, Bandpass Filter
4-5	Block Diagram, Demodulator
4-6	Block Diagram, Computer Control
4-7	VFCTD Computer Word Format
6-1	Top Assembly
6-2	Chassis Assembly
6-3	
	Demodulator P.W.B. Assembly
6-5	
6-6	
6-7	Input P.W.B. Assembly
6-8	
6-9 6-1Ø	
6-11	•
6-12	
6-12	-
6-14	
6-14	
6-16	
6-17	
6-18	
6-19	
6-2Ø	
6-21	-
6-22	
6-23	
6-24	Loop Power Supply P.W.B. Assembly
6-25	High Level Loop P.W.B. Assembly
6-26	Chassis Wiring Diagram
6-27	Input Piggy Back PWB Assembly
7-1	Input Board Schematic
7-2	Front Panel Board Schematic
7-3	Remote Board Schematic
7-4	Demodulator Schematic
7-5	Frequency Synthesizer Schematic
7-6	IF Filter Schematic
7-7	Time Base Board Schematic
7-8	Switch Card Schematic
7-9	Connector Board Schematic
7-1Ø	Display Board Schematic
7-11	Power Supply Schematic
7-12	Loop Power Supply Schematic
7-13	High Level Neutral Keyer Schematic

TABLES

•

TABLE		PAGE
1-1	Specifications Model 1632A	1-2
2-1 2-2	Rear Panel Connections Rear Panel Controls	2-4 2-5
3-1 3-2	Controls and Indicators List of all Possible Tone Frequencies	3-1 3-6
3-3	Frequencies of Voice-Frequency Frequency-Shift Telegraph Channels with Channel Spacing of 120 Hz (Frequency Deviation = <u>+</u> 30 Hz)	3-9
3-4	Frequencies of Voice-Frequency Frequency-Shift Telegraph Channels with Channel Spacing of 170 Hz (Frequency Deviation = <u>+</u> 42.5 Hz)	3-1Ø
3-5	Frequencies of Voice-Frequency On-Off-Keyed Telegraph Channels (Mark=Tone, Space=Absence of Tone)	3-11
3-6	Frequencies of Voice-Frequency Frequency-Shift Telegraph Channels with Channel Spacing of 24Ø Hz (Frequency Deviation = <u>+</u> 6Ø Hz)	3-12
3-7	Frequencies of Voice-Frequency Frequency-Shift Telegraph Channels with Channel Spacing of 34Ø Hz (Frequency Deviation = <u>+</u> 85 Hz)	3-13
4-1 4-2	Word I Word II	4-13 4-14
5-1 5-2 5-3	Required Test Equipment Input Circuits Functional Test Demodulator Circuits Functional Test	5-2 5-4 5-5

~

.

Figure 1-1. Model 1632A Voice Frequency Carrier Demodulator

SECTION I

INTRODUCTION

1.1 PURPOSE OF EQUIPMENT

The Model 1632A is a flexible voice frequency carrier demodulator that provides a means of receiving two multichannel or independent signals.

The tone frequencies and bandwidths are adjustable from the front panel and cover all standard voice frequency channels in increments of 30 or 42.5 Hz and baud rates up to 300.

The individual demodulators may be locally controlled from the front panel or remotely controlled by serial transmission of two 32-bit binary words. This feature allows a remote system to automatically establish receiving parameters that have been set up on a scheduled basis. All front panel controls except input selection and local/remote selection can be remote controlled.

Diversity capability is included so that the two demodulators may be externally tied together or to another similar demodulator.

The tone filter center frequencies are crystal controlled to +2 Hz. The demodulator is a single conversion type with a highly stable frequency synthesizer used for the local oscillator. An AGC circuit is provided for superior performance in a multiplex environment.

Each demodulator has its own sense switch to change the markspace polarities in the event that they are received inverted. In addition, each demodulator has an auto mark-hold feature to place the output in the mark-hold condition should both the mark and space channels fail.

1.2 PHYSICAL DESCRIPTION

The Model 1632A is an all solid-state device housed in an aluminum rack-mounting cabinet 19 inches wide by 3.5 inches high by 19 inches deep. The unit contains 17 PC boards without options. Access is provided by a removable top cover.

1.3 SPECIFICATIONS

Specifications for the Model 1632A are listed in Table 1-1.

Table 1-1. Specifications Model 1632A

1-1

ITEM	DESCRIPTION
LOCAL CONTROL Frequency Range	$\Delta f = 30 \text{ Hz}$ (from 300 Hz to 5970 Hz) $\Delta f = 42.5 \text{ Hz}$ (from 255 Hz to 8457.5 Hz)
REMOTE CONTROL Frequency range	$\Delta f = 30 \text{ Hz}$ (from 300 Hz to 4770 Hz) $\Delta f = 42.5 \text{ Hz}$ (from 255 Hz to 6757.5 Hz)
TONE FREQUENCY INCREMENTS	$\Delta f = 30 \text{ Hz}$ $\Delta f = 42.5 \text{ Hz}$
CHANNEL SPACING	Multiples of 30 Hz or 42.5 Hz depending on Δf .
MAXIMUM BAUD RATE	300 baud (dependent on filter bandwidth).
INPUT LEVEL	+10 dBm to -40 dBm for 600 ohm circuit, nominal 1 volt rms for 10K ohm circuit.
INPUT IMPEDANCE	600 ohms Unbalanced (600 ohms balanced and isolated optional) 10K ohms Unbalanced.
SIGNALLING SCHEMES	FSK or ON/OFF keyed tone.
NUMBER OF INPUTS	Two are provided, either demod may be connected to either input by a front panel switch.
LOW LEVEL	Polar keying (nominally +6V) compatible with MIL-STD-188C. May be changed to EIA-RS-232-C with jumper.
DIVERSITY	Mark and space low impedance tie points provided for each demodulator.
ENVE LOPE	Post detection low-pass filter outputs provided for mark and space tones of each demodulator (lØK ohm output impedance).

.

Table 1-1. Specifications Model 1632A (cont.)

•

ITEM	DESCRIPTION
MONITOR	Provision for monitoring input signals. These are buffered low impedance signals, not balanced or isolated. Buffer gain is approximately one.
HIGH LEVEL LOOP	Optional neutral or polar dry contacts with plug-in optically isolated keyers.
HIGH LEVEL LOOP SUPPLY	Optional <u>+</u> 65 Vdc 120 ma supply.
BANDPASS FILTER BANDWIDTHS	The available bandwidths are nominally:
DANDWIDINS	10 Hz - Tuning Only 40 Hz 55 Hz 75 Hz 105 Hz 145 Hz 200 Hz 330 Hz
POWER REQUIREMENT	ll5/230 Vac +10% 47/400 Hz 55 watts without optional loop supply.
POWER FAIL	9V battery maintains frequency information in storage registers.
CHASSIS DIMENSIONS	19 inches (48.3 cm) wide, 3.5 inches (8.89 cm) high, 19 inches (48.3 cm) deep, overall depth behind front panel approximately 20 inches (50.80 cm).
WEIGHT	Approximately 20 pounds (9.07 kg).
MOUNTING	Suitable for mounting into standard 19 inch (48.3 cm) wide equipment rack.
ENVIRONMENTAL OPERATING TEMPERATURE	غ to 50º C ambient

SECTION II

INSTALLATION

2.1 GENERAL

This section contains instructions for unpacking, mounting, and making all connections to the Model 1632A Demodulator Unit. The unit is adjusted and tested for correct operation prior to shipment from the factory.

2.2 UNPACKING AND INSPECTION

Open the shipping container being careful not to puncture the container with sharp/metallic objects which might damage the contents. Remove the packing and the unit from the container and inspect the unit for damage. If any damage as a result of shipping is observed, file a written claim with the shipping agency and forward a copy of the claim to:

PLANTRONICS/Frederick Electronics Corporation

7630 Hayward Road, P.O. Box 502

Frederick, Maryland 21701-0502

If packing for storage or reshipment is anticipated, replace the packing material in the shipping container and store the container for future use.

2.3 POWER REQUIREMENTS

The Model 1632A will operate on either 115 Vac, 60 Hz or 230 Vac, 60 Hz. Satisfactory operation is possible with 10% line voltage variations, and with frequencies from 47 to 400 Hz. The unit is set to operate on either 115 Vac or 230 Vac by a switch on rear panel. The unit is shipped from the factory with the switch in customer specified position.

C A U T I O N

The 115/230 Vac switch on the rear panel must be set to the 230 Vac position before the unit can operate on 230 Vac. Otherwise serious damage will result if the unit is connected to a 230 Vac source.

2.4 MOUNTING

The Model 1632A can be mounted in a standard 19-inch rack by inserting four screws through the front panel. A vertical rack space of 3.5 inches is required.

2.5 SIGNAL CONNECTIONS

All connections to the Model 1632A are located on the rear panel of the unit (refer to Figure 2-1). Connections are listed in Table 2-1. Those connections that do not apply to particular operating requirements should be ignored.

,

Figure 2-1. Model 1632A Rear Panel

Table 2-1. Rear Panel Connections

•

CONNECTOR	TERMINAL/PIN	FUNCTION
OUTPUT 1	1 2 3	+BATTERY \ BATTERY COMMON > OPTIONAL -BATTERY /
	4	CHASSIS GROUND
	5 6 7	MARK LOOP 1 \ LOOP COMMON 1 > OPTIONAL SPACE LOOP 1 /
	8 9 10 11 12 13 14	CHASSIS GROUND LOW LEVEL OUTPUT 1 MARK ENVELOPE 1 SPACE ENVELOPE 1 CHASSIS GROUND MARK DIVERSITY 1 SPACE DIVERSITY 1
OUTPUT 2	1 2 3 4	SPARE Spare Spare Chassis ground
	5 6 7	MARK LOOP 2 \ LOOP COMMON 2 > OPTIONAL SPACE LOOP 2 /
	8 9	CHASSIS GROUND LOW LEVEL OUTPUT 2
	10 11 12 13 14	SPACE ENVELOPE 2 MARK ENVELOPE 2 CHASSIS GROUND SPACE DIVERSITY 2 MARK DIVERSITY 2
CLK	BNC	REMOTE CLOCK
DATA	BNC	REMOTE DATA
CTL	BNC	REMOTE CONTROL
MBP (1 & 2)	BNC	MARK BANDPASS 1 & 2
SBP (1 & 2)	BNC	SPACE BANDPASS 1 & 2
MONITOR (1 &	2) BNC	INPUT MONITOR 1 & 2
INPUT (1 &	2) BNC	INPUT 1 & 2

2.6 REAR PANEL CONTROLS

Table 2-2 lists the functions of the rear panel controls.

CONTROL	FUNCTION
MODULE SELECT 1	Six position rotary switch used to select remote control address for left hand demodulator.
MODULE SELECT 2	As above for right-hand demodulator.
INPUT 1 SWITCH 10K/600	Selects input impedance for input 1.
INPUT 2 SWITCH 10K/600	Selects input impedance for input 2.

Table 2-2. Rear Panel Controls

2.7 INTERNAL ADJUSTMENTS

The following paragraphs contain the procedures to make the required adjustments to the Model 1632A. Reference Figure 2-2 for circuit board and component location.

2.7.1 Demodulator Board

2.7.1.1 MARK DIVERSITY OFFSET. A potentiometer located near Z14 is used to adjust the mark diversity offset. The adjustment is performed with the demod input switch selecting an input which is shorted. The mark diversity tie point on the rear connector is monitored with an oscilloscope and the potentiometer adjusted for minimum offset.

Figure 2-2. Model 1632A Internal View

2.7.1.2 SPACE DIVERSITY OFFSET. A potentiometer located near Z15 is used to adjust the space diversity offset. The adjustment procedure is exactly as above except the space diversity tie point is monitored with the oscilloscope.

2.7.1.3 AUTO MARK-HOLD THRESHOLD. A potentiometer located near Z22 is used to adjust the auto mark-hold threshold. The demodulator is connected and set up to receive an FSK signal with 600 ohm step attenuator in series with the input. Monitor TP3 with an oscilloscope, reduce the input level slowly from 0 dBm. The signal at TP3 will go from high to low when the threshold is passed. Adjust the potentiometer for the desired threshold (-55 dBm is nominal).

2.7.2 Synthesizer Board

2.7.2.1 MARK MIXER BALANCE. Apply an input signal to unit. Monitor mark mixer output (TP5). Adjust MX and MY pots until the maximum excursions of the signal are superimposed, see Figure 2-3. Then adjust the MZ pot until the signal is centered about zero volts. This can be accomplished by using a slower oscilloscope sweep so that a sine wave eye pattern appears on the scope and adjust for zero crossings at zero volts. Check also for symmetry of waveform, see Figure 2-4.

a. Not Superimposed

b. Superimposed

Figure 2-3. Maximum Excursions

a.

Offset Eye Pattern b. Eye Pattern Adjusted Crossings Occur At Zero Volts

Distorted Eye Pattern (Readjust X, Y Pots) с.

Figure 2-4. Sine Wave Eye Patterns

2.7.2.2 SPACE MIXER BALANCE. Repeat for space mixer. Monitor space mixer output (TP6) and adjust SX, SY and SZ pots.

2.7.3 Time Base Board

.

١

2.7.3.1 LOOP DELAY CLOCK. A jumper (eyelets A-C) on the time base is used to disable the delay clock if no high level loop keyers are installed. The jumper must be moved to eyelets A-B to enable the delay clock if high level loop keyers are to be used.

2.7.4 Computer Control

2.7.4.1 UNIT SELECT. There are four unit select jumper positions on this board. A jumper must be installed in one of these positions corresponding to the unit select address.

2.7.4.2 <u>REMOTE INPUT THRESHOLD</u>. A potentiometer located near Z1 is used to adjust the threshold of the input circuits. This potentiometer should be adjusted so that the voltage appearing at Z1 pin 2 is at the midpoint of the input signal voltage swing. This adjustment must be made with an oscilloscope or high input impedance VTVM.

2.7.5 Power Supply Board

2.7.5.1 LOW LEVEL OUTPUT POLARITY. There are two sets of jumpers which may be used to select the low level output of each driver to conform to either MIL-188 or RS-232 polarity. The output swing may be increased from +6V to +12V by removing one of the zener diodes between pin 2 and pin 6 of the output drivers.

SECTION III

OPERATION

3.1 GENERAL

•

This section contains a list of controls and indicators and complete operating instructions for the Model 1632A Demodulator.

3.2 CONTROLS AND INDICATORS

Table 3-1 lists the function of each control and indicator on the front panel and rear panel.

CONTROL/INDICATOR	FUNCTION
AMH ON/OFF switch	When in AMH ON position, activates circuit that places output in mark- hold condition if both mark and space channels are lost. Nominally -55 dBm.
∆f 30 Hz/42.5 Hz switch	Selects 30 Hz or 42.5 Hz frequency
BANDWIDTH (Hz) switch	Selects filter bandwidth in eight increments from 10 Hz to 330 Hz, as follows:
	10 Hz BW 40 Hz BW 55 Hz BW 75 Hz BW 105 Hz BW 145 Hz BW 200 Hz BW 330 Hz BW
	NOTE
	10 Hz BW for tuning only.

Table 3-1. Controls and Indicators

. - '

Table 3-1. Controls and Indicators (cont.)

÷.

.

~,.

Ŀ.

.

à

CONTROL/INDICATOR	FUNCTION
LEVEL 1	Indicates input 1 level.
HI LED	Level greater than Ø dBm.
NOR LED	Level between \emptyset dBm and $-2\emptyset$ dBm.
LOW LED	Level less than -20 dBm.
LEVEL 2	Indicates input 2 level.
HI LED	Level greater than Ø dBm.
NOR LED	Level between Ø dBm and -2Ø dBm.
LOW LED	Level less than -20 dBm.
	NOTE Level indicators correspond to setting of input switch.
MARK and SPACE displays	Each may display a number from Ø to 199 and when multiplied by △f is equal to the tone frequency. Leadin zeros are blanked. The units and tens digits are blanked if the corresponding phase locked loop is out of lock.
FREQ/ Af switches	Three switches for each tone, one corresponding to each digit displayed. Pushing switch down decrements one digit. Pushing the switch up increments one digit. Wraparound from zero to nine and fro nine to zero is included for units and tens. Wraparound from zero to one and one to zero is included for the hundreds digit.
MARK and SPACE LEDS (above mark and space displays)	Indicate keying of mark and space tones.

3-2

Table 3-1. Controls and Indicators (cont.)

CONTROL/INDICATOR	FUNCTION
INPUT 1/2 switch	Selects input 1 or input 2.
MODE NOR/MK/SP switch	Selects normal mode (mark and space), mark only mode, or space only mode.
POLARITY NOR/MK/REV switch	Selects output polarity; normal polarity, mark-hold for standby operation, or Reverse polarity if signal is inverted.
REMOTE/LOCAL switches 1 and 2	Places either DEMOD under local or remote control. Switch one corresponds to the demodulator on the left, switch two, to the demodulator on the right.
POWER/OFF switch	Applies primary power to the unit.

3.3 OPERATION

3.3.1 Demodulator Controls

Since the front panel controls on each of the two demodulators are alike, their operation is described only once in the following paragraphs.

3.3.1.1 <u>AMH</u> <u>ON/OFF</u> <u>SWITCH</u>. The AMH ON/OFF toggle switch activates the automatic mark-hold circuit in the demodulator. Setting the switch to the ON position activates the circuit that places the output in the mark-hold condition when both the mark and space channel intelligence is lost. This prevents garbled printout by the associated teleprinter.

т., т., т., 3.3.1.2 ΔF SWITCH. The Δf 30 Hz/42.5 Hz toggle switch is used to select the basic frequency increment of the tone frequency to be demodulated. In order to set up for a specific tone frequency, the switch must be set to the correct factor (i.e., either 30 Hz or 42.5 Hz). The following formula illustrates the weight of the frequency increment in obtaining a given frequency:

Frequency = $\Delta f \times (\text{number dialed})$.

Tables 3-2 thru 3-7 list all of the possible frequencies that may be obtained.

3.3.1.3 BANDWIDTH SWITCH. The BANDWIDTH rotary switch selects the bandwidths of both the mark and space filters in eight increments ranging from 10 Hz to 330 Hz. The switch may be used in conjunction with the MARK and SPACE switches and the Δf switch to cover tone frequencies not listed in Table 3-1. For example, a FSK signal with a frequency shift of 900 Hz may place one tone at 1000 Hz, and the other at 1900 Hz. Neither of these frequencies is listed in Table 3-1. However, using 30 Hz increments one synthesizer may be tuned for a center frequency of 990 Hz and the other for 1890 Hz. A filter bandwidth somewhat wider than normal for the baud rate to be received may be selected with the BANDWIDTH switch placing the received tone frequencies well within the 3 dB points of the filters.

NOTE

MARK and SPACE filter bandwidths on a given demodulator are not independently selectable.

3.3.1.4 MARK FREQUENCY SWITCHES. The MARK frequency switches permit tuning the mark center frequency. Multiplying by the 30 Hz or 42.5 Hz frequency increment provides the mark center frequency selected.

3.3.1.5 SPACE FREQUENCY SWITCH. The SPACE frequency switches operate in the manner described above to adjust the center frequency of the space channel.

and the second

3.3.1.6 KEY INDICATORS. The MARK and SPACE KEY indicators indicate when there is mark or space keying activity by the demodulator.

3.3.1.7 <u>NOR/MK/REV</u> <u>SWITCH</u>. The NOR/MK/REV 3-position toggle switch performs two functions. The NOR and REV positions operate as a mark-space sense switch, reversing the position of the mark and space signals when these signals are received in the incorrect relationship. When set to the center (MK) position, the demodulator output is placed in the mark hold condition.

3.3.1.8 MODE SWITCH. The MODE switch is used to select one of three operating modes for the demodulator. When set to the MK, or SP positions, the switch activates only the mark or space detector, respectively. Set to NOR, it activates both the mark and space detector circuits.

3.3.2 Diversity Operation

The 1632A has the capability of being configured to a diversity system. This is easily accomplished by connecting two demodulator inputs to two receiver/antenna systems tuned to the same signal, and connecting the corresponding demodulator diversity terminals on the rear panel (separate connections for Mark and Space). Table 3-2. List Of All Possible Tone Frequencies

.

FREQ/Af		FREQ∕∆f	FREQ	FREQ∕ ∆f	FREQ	
SETTING		SETTING		SETTING		
3 0 Hz I	NCREMENTS					
øø_\		46	138Ø Hz	92	276Ø Hz	
Ø1		47	1410 Hz	93	279Ø Hz	
Ø2		48	144Ø Hz	94	282Ø Hz	
Ø3 >	*	49	147Ø Hz	95	285Ø Hz	
Ø4		5Ø	1500 Hz	96	288Ø Hz	
Ø5		51	153Ø Hz	97	291Ø Hz	
Ø6		52	156Ø Hz	98	294Ø Hz	
Ø7		53	159Ø Hz	99	297Ø Hz	
Ø8		54	162Ø Hz	100	3000 Hz	
Ø9 /		55	1650 Hz	101	3Ø3Ø Hz	
10	300 Hz	56	168Ø Hz	102	3060 Hz	
11	33Ø Hz	57	1710 Hz	103	3090 Hz	
12	360 Hz	58	174Ø Hz	104	312Ø Hz	
13	390 Hz	59	177Ø Hz	105	315Ø Hz	
14	420 Hz	60	1800 Hz	106	318Ø Hz	
15	450 Hz	61	1830 Hz	107	321Ø Hz	
16	480 Hz	62	1860 Hz	108	324Ø Hz	
17	510 Hz	63	1890 Hz	109	3270 Hz	
18	540 Hz	64	1920 Hz	110	33ØØ Hz	
19	57Ø Hz	65	1950 Hz	111	3330 Hz	
2Ø	600 Hz	66	1980 Hz	112	3360 Hz	
21 22	630 Hz 660 Hz	67	2010 Hz	113	339Ø Hz	
23	69Ø Hz	68	2040 Hz	114	3420 Hz	
23	720 Hz	69 7Ø	2070 Hz	115	3450 Hz	
24	750 Hz	71	2100 Hz 2130 Hz	116	3480 Hz	
26	780 Hz	72	2150 HZ 2160 Hz	117 118	3510 Hz 3540 Hz	
27	810 Hz	73	2190 Hz	119	3540 Hz 3570 Hz	
28	840 Hz	74	2220 Hz	120	3600 Hz	
29	87Ø Hz	75	2250 Hz	120	3630 Hz	
3Ø	900 Hz	76	2230 HZ 2280 Hz	121	3660 Hz	
31	930 Hz	77	2310 Hz	122	369Ø Hz	
32	960 Hz	78	2340 Hz	123	372Ø Hz	
33	990 Hz	79	2370 Hz	125	3750 Hz	
34	1020 Hz	80	2400 Hz	126	378Ø Hz	
35	1050 Hz	81	243Ø Hz	127	381Ø Hz	
36	1080 Hz	82	2460 Hz	128	3840 Hz	
37	111Ø Hz	83	2490 Hz	129	387Ø Hz	
38	1140 Hz	84	2520 Hz	130	3900 Hz	
39	117Ø Hz	85	2550 Hz	131	3930 Hz	
4Ø	1200 Hz	86	258Ø Hz	132	396Ø Hz	
41	1230 Hz	87	261Ø Hz	133	3990 Hz	
42	126Ø Hz	88	264Ø Hz	134	4020 Hz	
43	129Ø Hz	89	267Ø Hz	135	4050 Hz	
44	132Ø Hz	90	27ØØ Hz	136	4080 Hz	
45	135Ø Hz	91	273Ø Hz	137	4110 Hz	
*NOTE:	OPERATION IN T	HIS AREA IS	S NOT RECOMM	ENDED.		~
	1	3-6		1		

Table 3-2. List Of All Possible Tone Frequenci
--

•

FREQ/Af SETTING	FREQ	FREQ/Af SETTING	FREQ	FREQ∕∆f SETTING	FREQ
	EMENTS (cont	``````````````````````````````````````			
$\frac{39}{138}$ $\frac{12}{10000}$	4140 Hz	159	477Ø Hz	180	5400 Hz
139	417Ø Hz	160	4800 Hz	181	5430 Hz
140	4200 Hz	161	483Ø Hz	182	5460 Hz
141	423Ø Hz	162	486Ø Hz	183	5490 Hz
142	426Ø Hz	163	4890 Hz	184	552Ø Hz
143	4290 Hz	164	492Ø Hz	185	555Ø Hz
144	432Ø Hz	165	495Ø Hz	186	558Ø Hz
145	4350 Hz	166	498Ø Hz	187	561Ø Hz
146	438Ø Hz	167	5010 Hz	188	5640 Hz
147	4410 Hz	168	5040 Hz	189	567Ø Hz
148	444Ø Hz	169	5070 Hz	19Ø	5700 Hz
149	447Ø Hz	17Ø	5100 Hz	191	573Ø Hz
15Ø	4500 Hz	171	5130 Hz	192	576Ø Hz
151	453Ø Hz	172	516Ø Hz	193	5790 Hz
152	456Ø Hz	173	5190 Hz	194	582Ø Hz
153	459Ø Hz	174	522Ø Hz	195	585Ø Hz
154 ·	4620 Hz	175	5250 Hz	196	588Ø Hz
155	465Ø Hz	176	5280 Hz	197	5910 nz
156	468Ø Hz	177	531Ø Hz	198	594Ø Hz
157	471Ø Hz	178	534Ø Hz	199	5970 Hz
158	474Ø Hz	179	537Ø Hz		
42.5 Hz IN	CREMENTS				
		22	935.0 Hz	44	1870.0 Hz
Ø1		23	977.5 Hz	45	1912.5 Hz
Ø2		24	1020.0 Hz	46	1955.Ø Hz
Ø3 > *		25	1062.5 Hz	47	1997.5 Hz
Ø4		26	1105.0 Hz	48	2040.0 Hz
Ø5		27	1147.5 Hz	49	2082.5 Hz
Ø6		28	1190.0 Hz	5Ø	2125.Ø Hz
07 /		29	1232.5 Hz	51	2167.5 Hz
Ø8 [.]	340.0 Hz	30	1275.Ø Hz	52	2210.0 Hz
Ø9	382.5 Hz	31	1317.5 Hz	53	2252.Ø Hz
10	425.Ø Hz	32	1360.0 Hz	54	2295.Ø Hz
11	467.5 Hz	33	1402.5 Hz	55	2337.5 Hz
12	510.0 Hz	34	1445.Ø Hz	56	238Ø.Ø Hz
13	552.5 Hz	35	1487.5 Hz	57	2422.5 Hz
14	595.Ø Hz	36	1530.Ø Hz	58	2465.Ø Hz
15	637.5 Hz	37	1572.5 Hz	59	2507.5 Hz
16	680.0 Hz	38	1615.Ø Hz	6Ø	2550.Ø Hz
17	722.5 Hz	39	1657.5 Hz	61	2592.5 Hz
18	765.0 Hz	4Ø	1700.0 Hz	62	2635.Ø Hz
19	807.5 Hz	41	1742.5 Hz	63	2677.5 Hz
20	850.0 Hz	42	1785.Ø Hz	64	2720.Ø Hz
21	892.5 Hz	43	1827.5 Hz	65	2762.5 Hz
*NOTE: OPE	RATION IN TH	IIS AREA IS	NOT RECOMMEN	DED.	

~

Table 3-2. List Of All Possible Tone Frequencies (cont.)

• e_i

٠

CHANNEL	FREQ∕∆f SETTING	FREQ	CHANNEL	FREQ∕∆f SETTING	FREQ
				C 1	1020
1 (mk)	13	39Ø	13 (mk)	61	1830
1 (sp)	15	45Ø	13 (sp)	63	1890
2 (mk)	17	51Ø	14 (mk)	65	1950
2 (sp)	19	57Ø	14 (sp)	67	2010
3 (mk)	21	63Ø	15 (mk)	69	2070
3 (sp)	23	69Ø	15 (sp)	71	2130
4 (mk)	25	75Ø	16 (mk)	73	219Ø
4 (sp)	27	81Ø	16 (sp)	75	225Ø
5 (mk)	29	87Ø	17 (mk)	77	231Ø
5 (sp)	31	93Ø	17 (sp)	79	237Ø
6 (mk)	33	99Ø	18 (mk)	81	2430
6 (sp)	35	1Ø5Ø	18 (sp)	83	2490
7 (mk)	37	111Ø	19 (mk)	85	255Ø
7 (sp)	39	117Ø	19 (sp)	87	261Ø
8 (mk)	41	123Ø	20 (mk)	89	267Ø
8 (sp)	43	129Ø	20 (sp)	91	273Ø
9 (mk)	45	1350	21 (mk)	93	279Ø
9 (sp)	47	1410	21 (sp)	95	285Ø
10 (mk)	49	147Ø	22 (mk)	97	291Ø
10 (sp)	51	153Ø	22 (sp)	99	297Ø
11 (mk)	53	159Ø	23 (mk)	1Ø1	3030
11 (sp)	55	165Ø	23 (sp)	1Ø3	3090
12 (mk)	57	1710	24 (mk)	105	3150
12 (sp)	59	1770	24 (sp)	107	3210

Table 3-3. Frequencies of Voice-Frequency Frequency-Shift Telegraph Channels with Channel Spacing of 120 Hz (Frequency Deviation = \pm 30 Hz)

•

3-9

Table 3-4. Frequencies of Voice-Frequency Frequency-Shift Telegraph Channels with Channel Spacing of 170 Hz (Frequency Deviation = +42.5 Hz)

.

CHANNEL	FREQ/Af Setting	FREQ	CHANNEL	FREQ∕ ∆ f SETTING	FREQ
1 (mk)	Ø9	382.5	10 (mk)	45	1912.5
1 (sp)	11	467.5	10 (sp)	47	1997.5
2 (mk)	13	552.5	ll (mk)	49	2082.5
2 (sp)	15	637.5	11 (sp)	51	2167.5
3 (mk)	17	722.5	12 (mk)	53	2252.5
3 (sp)	19	807.5	12 (sp)	55	2337.5
4 (mk)	21	892.5	13 (mk)	57	2422.5
4 (sp)	23	977.5	13 (sp)	59	2507.5
5 (mk)	25	1062.5	14 (mk)	61	2592.5
5 (sp)	27	1147.5	14 (sp)	63	2677.5
6 (mk)	29	1232.5	15 (mk)	65	2762.5
6 (sp)	31	1317.5	15 (sp)	67	2847.5
7 (mk)	33	1402.5	16 (mk)	69	2932.5
7 (sp)	35	1487.5	16 (sp)	71	3Ø17.5
8 (mk)	37	1572.5	17 (mk)	73	3102.5
8 (sp)	39	1657.5	17 (sp)	75	3187.5
9 (mk)	41	1742.5	18 (mk)	77	3272.5
9 (sp)	43	1827.5	18 (sp)	79	3357.5

Table 3-5. Frequencies of Voice-Frequency On-Off-Keyed Telegraph Channels (Mark=Tone, Space=Absence of Tone)

•

CHANNEL	FREQ/ A F SETTING	FREQ
1	14	420
2	18	540
3	22	660
2 3 4	26	78Ø
5	3Ø	900
5 6 7	34	1020
7	38	1140
8	42	126Ø
8 9	46	1380
10	50	1500
11	54	1620
12	58	1740
13	62	1860
14	66	198Ø
15	70	2100
16	74	222Ø
17	78	2340
18	82	2460
19	86	2580
20	90	2700
21	94	282Ø
22	98	2940
23	102	3060
24	106	318Ø

CHANNEL SPACING: 120 Hz

3-11

CHANNEL	FREQ/ A F SETTING	FREQ
l (mk)	14	42Ø
l (sp)	18	54Ø
2 (mk)	22	66Ø
2 (sp)	26	78Ø
3 (mk)	3Ø	900
3 (sp)	34	1020
4 (mk)	38	114Ø
4 (sp)	42	126Ø
5 (mk)	46	138Ø
5 (sp)	50	1500
6 (mk)	54	162Ø
6 (sp)	58	174Ø
7 (mk)	62	186Ø
7 (sp)	66	198Ø
8 (mk)	7Ø	2100
8 (sp)	74	2220
9 (mk)	78	234Ø
9 (sp)	82	246Ø
10 (mk)	86	258Ø
10 (sp)	9Ø	27ØØ
ll (mk)	94	282Ø
ll (sp)	98	294Ø
12 (mk)	102	3060
12 (sp)	106	3180

Table 3-6. Frequencies of Voice-Frequency Frequency-Shift Telegraph Channels with Channel Spacing of 240 Hz (Frequency Deviation = +60 Hz)

.

CHANNEL	FREQ∕ ∆ F SETTING	FREQ
l (mk)	18	765
l (sp)	22	935
2 (mk)	26	11Ø5
2 (sp)	30	1275
3 (mk)	34	1 445
3 (sp)	38	1615
4 (mk)	42	1785
4 (sp)	46	1955
5 (mk)	5Ø	2125
5 (sp)	54	2295
6 (mk)	58	2465
6 (sp)	62	2635
7 (mk)	66	28Ø5
7 (sp)	7ø	2975
8 (mk)	74	3245
8 (sp)	78	3315
9 (mk)	82	3485
9 (sp)	86	3655

Table 3-7. Frequencies of Voice-Frequency Frequency-Shift Telegraph Channels with Channel Spacing of 340 Hz (Frequency Deviation = +85 Hz)

.