BULLETIN 282B

TECHNICAL MANUAL MODEL 35 RECEIVING-ONLY REPERFORATOR SET (LPR, LRB, LRC, LT)

SEE INDIVIDUAL SECTIONS FOR COPYRIGHT NOTICES.

PRINTED IN U.S.A.

INTRODUCTION

Bulletin 282B is a technical manual that provides descriptive and maintenance information for the Model 35 Receiving-Only Typing Reperforator Set.

The manual is made up of a group of appropriate independent sections. These are separately identified by title and section number. The pages of each section are numbered consecutively, independent of other sections.

(

The identifying number of a section, a 9-digit number, appears at the top of each page of the section, in the left corner of the left-hand pages and the right corner of the right-hand pages. The sections are placed in the manual in ascending numerical order.

To locate specific information refer to the table of contents on the following page. Find the name of the involved component in column one and the title of the section in column two. The correct 9-digit section number will then be found in column three. Turn to page one of the section indicated, where the contents of that section will be found (except where a section is small and does not require a listing of contents).

The sections comprising this bulletin are now stocked separately and may be individually ordered if the entire bulletin is not needed.

TABLE OF CONTENTS

FILING INSTRUCTIONS

- 1. The following filing instructions apply to changes sent to the field.
- 2. Asterisks (*) in the table of contents indicate changes.

(

(

- 3. When the issue of a section changes, replace the old issue with the attached new one.
- 4. In the case of addendums, turn to the affected section and follow the instructions on the first page of the attached addendum.
- 5. Replace the old table of contents with this new one.

Note: For information on motor units, see Bulletin 295B.

Equipment	Contents	Section	Issue
35 Receiving-Only Typing Reperforator Set 35 Receiving-Only Typing Reperforator Set 35 Receiving-Only Typing Reperforator Set	Description Installation Trouble Shooting	574-203-100TC 574-203-200TC 574-203-300TC	3 2 1
35 Electrical Service Unit (LESU)	Description	574-226-100TC	4
35 Receiving-Only Typing Reperforator Cover (LRC)	Description and Adjustments	574-230-101TC	1
35 Reperforator Base (LRB) 35 Reperforator Base (LRB) 35 Reperforator Base (LRB)	Description Adjustments Lubrication	574-232-101 TC 574-232-703 TC 574-232-704 TC	1 1 1
 35 Typing Reperforator (LPR) 35 Typing Reperforator (LPR) 35 Typing Reperforator (LPR) 35 Typing Reperforator (LPR) 	Description Adjustments Lubrication Disassembly Reassembly	574-233-100TC 574-233-700TC 574-233-701TC 574-233-702TC	5 6* 5 2
35 Reperforator Table (LT)35 Reperforator Table (LT)35 Reperforator Table (LT)	Description Adjustments Lubrication	574-234-100TC 574-234-700TC 574-234-701TC	3 3 3

282B

TELETYPE CORPORATION Skokie, Illinois, U.S.A.

(

(

35 TYPING REPERFORATOR (LPR)

ADJUSTMENTS

	CONTENTS	PAGE	CONTENTS P.	AGE
1.	GENERAL	. 3	Punch slide latch spring	34 32
2.	BASIC UNIT	• 5	Reset bail trip lever (final) Tape guide assembly spring	27 32
	Function Mechanism		Tape shoe torsion spring	34 29
	Cam follower lever spring		Ten characters per inch	
	(early design)	. 18	(preliminary)	29
	Cam follower lever spring		Toggle bail eccentric (preliminary)	24
	(latest design)		Toggle operating arm	24
	Cam follower roller		Dillow Obits and Dains Groups anion	
	Cam follower roller alignment		Ribbon Shift and Print Suppression	
	Clutch shoe lever		Mechanism (Early Design)	
	Clutch shoe lever spring		Armaturo air gan	56
	Clutch shoe spring Function clutch drum endplay		Armature air gap	56
	Function clutch latchlever spring		Armature spring.	56
	Function clutch release lever spring .		Armature upstop.	56
	Function clutch trip lever		Ribbon shift and print suppression	00
	Release downstop bracket		contacts	40
	Reset arm		Ribbon shift and print suppression	
	Reset bail trip lever spring		contact position	41
	(early design)	. 18	•	
	Reset bail trip lever spring		Ribbon Shift and Print Suppression	
	(latest design)	. 18	Mechanism (Latest Design)	
	Trip cam follower lever			
	(preliminary)	. 18	Armature air gap and downstop	57
			Armature spring	57
	Punch Mechanism		Armature upstop	57
			Ribbon carrier	55
	Bias spring (punch block)		Ribbon carrier spring	55
	Bias spring (tape chute)		Ribbon shift and print suppression	40
	Detent lever spring		contacts	42
	Feed pawl		Ribbon shift and print suppression contact position	43
	Feed pawl spring		Ribbon shift blocking link	57
	Lateral and front to rear feed wheel	. 20	Ribboli Shift blocking link	51
	position detent (early design)	. 30	Selector Mechanism	
	Lateral and front to rear feed wheel	. 00		
	position detent (latest design)	. 31	Clutch shoe lever	5
	Perforator drive link spring		Clutch shoe lever spring	6
	Punch mounting plate (final)		Clutch shoe spring	6
	Punch mounting plate (preliminary) .		Marking locklever spring	9
	Punch pin penetration		Oil shield	17
	Punch slide downstop position		Pushlever reset bail spring	13
	Punch slide guide (final)		Range finder knob phasing	15

©1962 and 1964 by Teletype Corporation All rights reserved Printed in U.S.A.

CONTENTS PAGE

Selector armature	7
Selector armature downstop (final)	10
Selector armature downstop	
(preliminary)	7
Selector armature spring (final)	11
Selector armature spring	
(preliminary)	11
Selector cam lubricator	11
Selector clutch drum endplay	14
Selector clutch latchlever spring	13
Selector clutch stop arm	15
Selector lever spring	14
Selector magnet bracket	8
Selector pushlever spring	14
Selector receiving margin	16
Spacing locklever spring	13
Start lever spring	16

Slack Tape Mechanism

(10000000000) 1 1 1 1 1 1 1 1 1 1 1 1 1 1	••
Clamp plate spring (early design)	63
Clamp plate spring (latest design)	64
Tape platform (early design)	63
Tape platform (latest design)	64

Typing Mechanism

Axial corrector (yielding)	49
Axial output rack guide roller	51
Axial sector alignment	50
Bellcrank springs - 1 to 5	35
Bellcrank springs - 6 and 7	36
Bellcrank spring - 8	35
Cam follower roller arm position	44
Centering clearance	37
Correcting drive link (nonyielding)	52
Correcting drive link (yielding)	
extension spring	49
Correcting drive link spring	
(nonyielding)	47
Detent spring	63
Drive arm	62
Drive arm spring	63
Eccentric shaft detent lever spring	50
Feed pawl spring	62
Function blade spring	47
Function box	38
Lifter operating range	44
Lifter spring	47
Lifter toggle link spring	47
Oscillating bail drive link	48
Oscillating bail pivot	48
Print hammer	61
Print hammer accelerator latch	
spring	59

CON	TEN	TS	

PAGE

Print hammer accelerator spring	59
Print hammer return spring	59
Print hammer trip lever spring	59
Printing latch	58
Pulse lever spring no. 5	37
Pulse lever spring no. 7	37
Pushbar guide bracket	51
Pushbar location	39
Pushbar operating blade (preliminary).	35
Ratchet wheel torque spring	62
Reperforator mounting	29
Rotary corrector arm	54
Rotary corrector mesh	53
Shoulder clearance	36
Toggle link	45
Toggle trip arm	46
Type wheel (final)	60
Type wheel (preliminary)	60
Type wheel rack clearance	52

3. VARIABLE FEATURES

End of Feed-Out Contacts for Noninterfering RUBOUT Tape Feed-Out Mechanism

Contact assembly	77
Contact assembly mounting bracket	78
Contact spring gap (preliminary)	77
Contact swinger (preliminary)	77
Latchlever spring	77
Tape length adjusting plate	78
Manual and Power Drive Backspace Mechanism	

Armature hinge (early design)	80
Backspace pawl clearance	79
Backspace ratchet	79
Feed pawl eccentric (preliminary)	80

Power Drive Backspace Mechanism

Armature bail spring (early design)	84
Armature latch spring	
(early design)	84
Armature spring (latest design)	83
Armature upstop (early design)	81
Bellcrank spring	84
Drive link (early design)	81
Feed pawl spring	84
Final manual or power adjustment	
(latest design)	83
Latch (early design)	82
Latch extension (early design)	81
Latch extension spring (latest 'design).	83
Magnet position (latest design)	83
Nonrepeat arm (early design)	82

CONTENTS

PAGE

Print Suppression Mechanism

Accelerator blocking link	
(latest design)	85
Accelerator blocking link	
(early design)	86
Control lever (manual)	87
Remote Control Noninterfering	
RUBOUT Tape Feed-Out Mechanism	
RODOOT Tape Feed-Out Mechanism	
Adjusting lever	73
Armature backstop	66
Armature hinge	65
Blocking bail spring	66
Blocking latch torsion spring	66
Drive arm spring	72
Drive bail spring	65
Feed pawl and front check pawl	00
springs	68
Front ratchet stop position	69
Latchlever	67
Latchlever	67
Magnet assembly	65
Mounting plate	65
Nonrepeat lever spring	66
Punch slide latch	72
Ratchet return spring	70
Rear check pawl	68
Rear check pawl spring	68
Release arm	71
Release arm spring	71
Release lever	66
Release lever spring	67
Reset bail latch	76
Reset bail latch spring	76
Reset bail trip lever	74
Reset bail trip lever srping	76
Tape length adjusting plate	75
Time delay lever	70
Time delay lever spring	70
Trip cam follower.	73
	10

Signal Bell and EOT Contacts

Normally	closed contact	88
Normally	open contact gap	88

1. GENERAL

(

1.01 This section provides adjustments and requirements for the 35 typing reperforator (Figure 1). It is reissued to include recent engineering changes and additions. Since this is a general revision, marginal arrows ordinarily used to indicate changes and additions have been omitted. 1.02 The basic equipment includes selector mechanism, transfer mechanism, eightlevel fully perforating punch mechanism, and printing mechanism. The printing mechanism includes letters-figures contacts and magnet and may include print suppression, remote control noninterfering rubout tape feed-out, end of feed-out timing contacts, and power drive backspace mechanisms.

1.03 Reference to left or right, front or rear, and up or down refer to the apparatus in its normal operating position, as viewed from the front with the selector mechanism to the right and the punch mechanism to the left. It is assumed that the elements depicted in illustrations in this section are being viewed from a position in front of the equipment, unless the illustrations are specifically labeled otherwise. In the illustrations, pivot points are shown by circles or ellipses that are solid black to indicate fixed points and cross-hatched to indicate floating points.

1.04 Tools required to make the adjustments and test the spring tensions are listed in Section 570-005-800TC. Spring tensions given in this section are indications, not exact values, and should be checked with the correct scale applied in the positions shown in the drawings.

Figure 1 - Typical 35 Typing Reperforator (Front View)

1.05 The unit is in its unoperated, or stop, condition when it is not under power. It is in its idling condition when it is under power

is in its idling condition when it is under power and clutches are disengaged (steady marking condition of signal line). The unit is in the letters condition when the type wheel rack is in its upper position (the numerals appear on the top half of the type wheel). The unit is in the figures condition when the type wheel rack is in its lower position (the letters appear on the top half of the type wheel).

CAUTION: APPARATUS SHOULD NOT BE SEPARATED FROM ITS PROTECTIVE HOUSING UNLESS POWER IS DISCONNEC-TED. WHERE OPERATION OF THE EQUIP-MENT IS REQUIRED AFTER IT HAS BEEN SEPARATED FROM ITS PROTECTIVE HOUSING, APPROPRIATE PRECAUTION-ARY MEASURES SHOULD BE TAKEN TO PREVENT ACCIDENTS.

1.06 When a requirement calls for a clutch to be DISENGAGED, the clutch shoe lever must be fully latched between its trip lever (or stop arm) and latchlever. The mainshaft will then turn freely without the clutch shoes dragging. When the clutch is ENGAGED, the shoe lever and cam disc stop-lug are moved apart, and the clutch shoes are wedged against the drum so that the clutch turns with the shaft.

<u>Note</u>: If the shaft is turned by hand, the clutch will not fully disengage upon reaching its stop position. Where a procedure calls for disengagement, rotate the clutch to its stop position, apply a screwdriver to the cam disc stop-lug and turn the disc in the normal direction of shaft rotation until the latchlever seats in its notch in the disc.

1.07 To manually operate the 35 typing reperforator, proceed as follows.

(a) Attach the TP321071 armature clip to the selector magnet armature by carefully putting the flat formed end of the armature clip over the top of the armature between the pole pieces and then hooking the projection under the edge of the armature. The spring tension of the armature clip will hold the selector armature in the marking (attracted) position.

(b) While holding the selector magnet attracted by means of the armature clip, manually rotate the mainshaft in a counterclockwise direction until all the clutches are brought to their disengaged position.

- (c) Fully disengaged the clutches in accordance with 1.06, Note.
- (d) Release the selector magnet armature momentarily to permit the selector clutch to engage.

(e) Rotate the mainshaft slowly until all the pushlevers have fallen to the left of their selecting levers.

- (f) Strip the pushlevers from their selector levers if they are spacing in the code combination of the character or function that is being selected. Allow the pushlevers to move to the right. The pushlevers and selector levers move in succession, starting with the inner lever no. 1 to the outer lever no. 8.
- (g) Continue to rotate the mainshaft until all operations initiated by the selector action clear through the unit.

1.08 Parts dismantled to facilitate checking or readjustment should be reassembled after the operation is completed. If a part mounted on shims is to be dismantled, the number of shims used at each mounting screw should be noted so that the same shim pileups can be replaced when the part is remounted. When parts removed are replaced, related adjustments which may have been affected should be checked.

1.09 Parts that are worn to the extent that they can no longer be made to meet the specified requirements by authorized adjustments, or which are worn to the extent that it seems probable that early further wear might cause a loss of adjustment, should be replaced by new parts. Springs which do not meet the requirements and for which there are no adjusting procedures should be discarded and replaced by new springs.

1.10 All contact points should meet squarely. Smaller points should fall wholly within the circumference of larger mating points. Points that are the same size should not be out of alignment more than 25 percent of the point diameter. Avoid sharp kinks or bends in the contact springs.

Note: Keep all electrical contacts free of oil and grease.

1.11 Where a 35 typing reperforator is used

as a component of a receive-only or a send-receive set, it is mounted on a base or keyboard base. Refer to the base, keyboard and other applicable sections for gear mesh and additional adjustment requirements.

2. BASIC UNIT

2.01 The following figures show the adjusting tolerances, position of parts, and spring tensions. The illustrations are arranged so that the adjustments are in the sequence that would be followed if a complete readjustment of the apparatus were being made. In some cases, where an illustration shows interrelated parts, the sequence that should be followed in checking the requirements is indicated by the letters (A), (B), (C), etc.

2.02 Selector Mechanism

2.03 Function Mechanism

Note: For gear mesh adjustment, refer to applicable sections covering base or keyboard mounting facility.

(A) CLUTCH SHOE LEVER

<u>Note:</u> This adjustment should be made for both selecting and function clutches.

(1) To Check

Disengage clutch. Measure clearance.

(2) To Check

Align head of clutch drum mounting screw with stop-lug. Engage clutch. Manually press shoe lever and stop-lug together and allow to snap apart. Measure clearance.

Requirement

Clearance between shoe lever and stop-lug — Min 0.055 inch---Max 0.085 inch

greater when clutch engaged (2) than when disengaged (1).

To Adjust

Engage wrench or screwdriver with lug on adjusting disc. Rotate disc with clamp screws loosened. Tighten screws.

Note: After making adjustment, disengage clutch. Remove drum mounting screw. Rotate drum in normal direction and check to see if it drags on shoe. If it does, refine adjustment.

CLUTCH DRUM MOUNTING SCREW

ADJUSTING

DISC

(Right Side View)

CLAMP SCREW

DRUM

COLLAR

FUNCTION

CAM SLEEVE

COLLAR

MOUNTING SCREW

STOP-LUG

(B) <u>FUNCTION CLUTCH DRUM</u> ENDPLAY

Requirement

With function clutch disengaged — Min some---Max 0.015 inch when play is taken up to make clearance maximum.

To Adjust

With its mounting screw loosened, move drum to extreme front position. Tighten drum mounting screw. Position collar with mounting screw loosened. Tighten screw.

- 2.04 Selector Mechanism (continued)
- 2.05 Function Mechanism (continued)

Note: These spring tensions apply to both clutches.

2.06 Selector Mechanism (continued)

(

Note: To facilitate making the following adjustments, remove the range finder assembly and selector magnet assembly. To insure better operation, pull a piece of bond paper between the armature and the pole pieces to remove any oil or foreign matter that may be present. Make certain that no lint or pieces of paper remain between the pole pieces and the armature.

Position downstop bracket with mounting screw loosened. Replace oil shield and check <u>OIL SHIELD</u> (2.16) adjustment. Tighten screw.

2.07 Selector Mechanism (continued)

2.08 Selector Mechanism (continued)

Note: See preceding page for SELECTOR MAGNET BRACKET adjustment, requirements (1) and (2).

2.09 Selector Mechanism (continued)

SELECTOR ARMATURE DOWNSTOP (Final)

Requirement

With the selector magnet de-energized and the spacing locklever on the low part of its cam, there should be

-- Min 0.005 inch--- Max 0.015 inch

clearance between the top of the armature extension and the bottom of the lower step of the spacing locklever.

To Adjust

Refine the SELECTOR ARMATURE DOWNSTOP (Preliminary) (2.06) adjustment.

2.10 Selector Mechanism (continued)

SELECTOR ARMATURE SPRING (Preliminary)

(For Units Employing Selector Armature With Two Antifreeze Buttons Only)

Requirement

(

(

With locking levers and start lever on high part of their cams, scale applied as nearly vertical as possible under end of armature extension, it should require approximately the following tensions to move the rear antifreeze button against the magnet core.

Note: See SELECTOR RECEIVING MARGIN (2.15) adjustment

SELECTOR ARMATURE SPRING (Final)

(1) Requirement

When a distortion test set is available, the selector armature spring tension should be refined (15 grams min), if necessary, to obtain satisfactory receiving margins. The front antifreeze button must contact the magnet core when the magnet coils are energized.

See SELECTOR RECEIVING MARGIN (2.15) adjustment.

2.11 Selector Mechanism (continued)

SELECTOR ARMATURE SPRING (Preliminary) (continued)

(For Units Employing Selector Armature With Single Antifreeze Button Only)

(1) Requirement

With locking levers and start lever on high part of their cams, scale applied as nearly vertical as possible under end of armature extension, it should require the following tensions to move armature to marking position:

Note: This spring can be adjusted for maximum selector performance only when printer is connected to the specific circuit over which it is to operate under service conditions. Since there are several operating speeds and since circuits vary widely, it is impossible to adjust spring for maximum performance at the factory. The foregoing spring tension requirement is given to permit operation prior to measurement of receiving margins. Readjustment made to obtain satisfactory receiving margin should not be disturbed in order to meet requirements of this adjustment. The final spring tension should be held as close as possible to the values given above, consistent with good receiving margins.

To Adjust

Position adjusting nut.

(2) Requirement See <u>SELECTOR RECEIVING MARGIN</u> (2.15) for final adjustment.

2.12 Selector Mechanism (continued)

To Adjust

Position clutch drum on mainshaft with mounting screw loosened.

(A) RANGE FINDER KNOB PHASING Requirement With range finder knob turned to either end of rack, zero mark on scale should be in line with scribed line on range MOUNTING NUT finder plate ± 3 points. To Adjust Remove mounting nut, disengage knob from rack and position knob. Re-engage knob C with rack and replace mounting nut. 50

RACK

CLUTCH SHOE LEVER

Selector Mechanism (continued)

Note: Replace range finder and selector magnet assembly before checking these

SELECTOR CLUTCH

2.14

RANGE FINDER KNOB

CLUTCH STOP ARM

CLAMP SCREW

STOP ARM BAIL

(B) SELECTOR CLUTCH STOP ARM

Requirement

RANGE SCALE

adjustments.

С

(

Range scale set at 60. Selector clutch disengaged. Armature in marking position. Clutch stop arm should engage clutch shoe lever by approximately full thickness of stop arm.

MANA

To Adjust

Position stop arm on stop arm bail with clamp screw loosened. Tighten screw.

2.15 Selector Mechanism (continued)

SELECTOR RECEIVING MARGIN

- (1) Requirement (For Units Employing Armature With One Antifreeze Button) When a signal distortion test set is available for determining the receiving margins of the selector, and where the condition of the components is equivalent to that of new equipment, the range and distortion tolerances below should be met.
- (2) Requirement (For Units Employing Armature With Two Antifreeze Buttons) When a distortion test set is available, the selector armature spring tension should be refined, if necessary, to obtain satisfactory receiving margins. The front antifreeze button must contact the magnet core when the magnet coils are energized.
- To Adjust

Refine the SELECTOR ARMATURE SPRING (2.10) adjustment.

Current	Speed in WPM	Points Range with Zero Distortion	Percentage of Marking and Spacing Bias	End Distortion Tolerated with Scale at Bias Optimum Setting
0.500 Amp (Windings Series)	100	72	38	35

SELECTOR RECEIVING MARGIN MINIMUM REQUIREMENTS

2.16 Selector Mechanism (continued)

(

(

(

Position shield with mounting screw loosened. Make sure oil shield mounting stud is secure before making adjustment. Check to be sure there is clearance between the oil shield and armature extension when the armature is energized. Tighten screw.

Function Mechanism (continued) 2.17Note 1: For units equipped with automatic noninterfering rubout tape feed-out mechanism, substitute adjustment in variable features. Part 3. (A) TRIP CAM FOLLOWER LEVER (Preliminary) (1) Requirement With trip cam follower lever on high part of cam, clearance between clutch release lever and reset bail trip lever should be Min 0.010 inch---Max 0.030 inch -(2) Requirement Some clearance between reset bail trip lever and left end of slot in downstop bracket.-To Adjust By means of pry point, position adjusting arm on follower lever with locknut loosened. Tighten nut. (C) RESET BAIL TRIP LEVER SPRING (Latest Design) Requirement Trip reset bail trip lever. With scale pulling at top of reset bail trip lever Min 1 oz---Max 4 oz to start lever moving. Note 2: It may be necessary to remove ribbon feed mechanism when checking this tension. DOWNSTOP BRACKET RESET BAIL CLUTCH RELEASE LEVER RESET BAIL DOWNSTOP TRIP LEVER FUNCTION TRIP CAM 1101 CLUTCH TRIP CAM MAINSHAFT RELEASE LEVER FOLLOWER LEVER RESET BAIL TRIP LEVER RESET BAIL LOCKNUT SPRING TRIP LEVER SPRING PRY ADJUSTING POINT ARM · CAM FOLLOWER SPRING BRACKET LEVER SPRING (B) CAM FOLLOWER LEVER SPRING (Early RESET BAIL TRIP LEVER SPRING Design) (Early Design) Requirement Requirement With follower lever on high part of trip With follower lever on high part of cam and main trip lever held away from trip cam adjusting arm Min 2-1/2 oz---Max 4 oz-Min 2-1/2 oz --- Max 4-1/2 oz to start adjusting lever moving. to start trip lever moving.

Page 18

2.18 Function Mechanism (continued)

(

(

(Right Side View)

2.21 Function Mechanism (continued)

Requirement

With function clutch tripped, rotate shaft until clearance between function clutch disc stop-lug and clutch stop lever is at a minimum. Release lever resting against downstop bracket. Clearance between function clutch disc stop-lug and stop lever Min 0.002 inch---Max 0.045 inch _____

To Adjust

Remove tape guide. With downstop bracket mounting screws friction tight position bracket. Tighten screws.

2.22 Punch Mechanism

PUNCH MOUNTING PLATE (Preliminary)

Requirement

- The punch mechanism mounting screw, beneath punch block, and mounting screw at lower edge of punch mechanism backplate should be located centrally within their respective mounting holes.

Note: The mounting holes are oversize to facilitate use of punch mechanism on the typing reperforator.

To Adjust

C

Remove mounting screw at the lower edge of punch mechanism backplate. With the two remaining backplate mounting screws and mounting bracket screw friction tight, position punch mechanism so that the tapped hole of the frame is centrally located (as gauged by eye) within large body hole of punch mechanism backplate. Tighten the two backplate mounting screws and recheck to see that requirement is met. Replace and tighten the lower backplate mounting screw. Tighten the bracket mounting screw.

2.23 Punch Mechanism (continued)

Punch Mechanism (continued) 2.24

(A) PUNCH PIN PENETRATION

(1) Requirement

With the RUBOUT combination (12345678) selected, function clutch engaged, rotate mainshaft until all punch pins are into or above the tape aperture in punch block. With the TP159926 gauge in position

Min 0.050 inch

clearance between feed pawl stud and the gauge.

(2) Requirement

With RUBOUT combination selected, function clutch engaged, rotate mainshaft until all punch pins have cleared the punch block. With the TP159926 gauge in position Min some---Max 0.080 inch

clearance between feed pawl stud and gauge.

To Adjust

Refine the TOGGLE BAIL ECCENTRIC (2.23) adjustment keeping the indent to the right of a vertical centerline through the shaft. Tighten nut.

B) PUNCH SLIDE GUIDE (Final)

Requirement

The punch slides should align with their corresponding punch pins and be free of binds after tightening the guide mounting studs. Each punch slide should return freely after being pushed in not more than 1/16 inch.

To Adjust

Position the guide with its mounting studs friction tight. Tighten studs.

(C) PUNCH SLIDE DOWNSTOP POSITION

Requirement

With function clutch disengaged and latched, play taken up toward the top, clearance between both the front and rear punch slides and the downstop plate

Min some---Max 0.008 inch

All other punch slides should have some clearance.

Note: To check for some clearance, place unit in stop position, trip function trip mechanism and latches. The punch slides should move fully to their operated position.

To Adjust

With unit in stop position, loosen the two downstop plate mounting locknuts and locate the downstop plate to meet the requirement.

2.25 Punch Mechanism (continued)

PUNCH MOUNTING PLATE (Final)

(1) To Check

Select RUBOUT code combination (12345678). Rotate until function clutch trips with punch levers in extreme left-hand position.

Requirement

Clearance between punch slide and punch slide latch Min 0.015 inch---Max 0.045 inch at slide where clearance is least.

To Adjust

Loosen perforator mounting screws, adjusting clamp lockscrew, adjusting clamp pivot screw, and anchor bracket screw until friction tight. Place tip of screwdriver between screw and rim of pry hole and pry perforator up or down. Tighten only adjusting clamp lockscrew.

(2) To Check

Remove ribbon and tape. With unit in stop position and upper no. 7 pushbar to the right, check clearance between rear leg of stripper plate and type wheel. Select the R code combination (-2--5-78), trip the function clutch, and move rocker bail to its extreme left position. Check clearance between front leg of the stripper plate and type wheel.

Requirement

Clearance between the character P and the front or rear leg of stripper plate (whichever has the least clearance) should be

- Min 0.075 inch---Max 0.085 inch

To Adjust

Position perforator with two mounting screws, adjusting clamp pivot screw, and anchor bracket screw friction tight. Tighten screws. Check <u>RESET BAIL TRIP</u> <u>LEVER</u> (2.26) requirement for some clearance and adjust if necessary.

2.26 Punch Mechanism (continued)

ĺ

Sec.

Const and

RESET BAIL TRIP LEVER (Final)

2.27 Punch Mechanism (continued)

(A) LATCHLEVER CLEARANCE

Requirement

With NULL code (BLANK) combination selected, the function clutch disengaged and latched, clearance between the punch slide and its associated latchlever should be

Min 0.008 inch---Max 0.020 inch for the slide having the least clearance.

To Adjust

Rotate the reset bail eccentric shaft with its locknut loosened. Keep the indentation in the eccentric above center of shaft. Tighten locknut.

Note: This adjustment is related to TEN CHARACTERS PER INCH (2.28), and the two adjustments should be made at the same time.

Rotate the feed pawl eccentric with lockscrew loosened. Tighten screw.

2.28 Punch Mechanism (continued)

TEN CHARACTERS PER INCH (Preliminary)

- (1) Requirement Indent of die wheel eccentric stud point ing downward.
 - To Adjust Position die wheel eccentric stud with locknut loosened. Tighten nut.
- (2) Requirement

With tape shoe blocked away from feed wheel, feed pawl and detent disengaged, and tape removed, feed wheel should rotate freely. Check through 3 or 4 revolutions of feed wheel. Refine requirement (1) above if necessary to meet this requirement.

<u>Note</u>: Before proceeding with the following adjustment check both <u>BIAS SPRING</u> (2.31) tensions, and if unit is equipped with a slack tape mechanism having a clamp plate with an adjustable wear disc, loosen the mounting nut and turn a new edge of the disc toward the tape. Tighten nut.

REPERFORATOR MOUNTING

Requirement

Mount the reperforator to the base and adjust in accordance with the associated base section.

(1) Requirement

With a piece of tape perforated with six series of 9 NULL code (BLANK) combinations followed by a rubout combination placed over the TP95960 gauge or the smooth side of the TP156011 tape gauge so that the circular portion of the first number 2 code hole in the tape is concentric with the first hole of the tape gauge, the next four holes in the tape gauge should be visible through the number 2 code holes in the tape and the circular portion of the last (sixth) number 2 code hole in the tape should be entirely within the 0.086 diameter hole of the tape gauge.

(2) Requirement

With tape shoe held away from feed wheel, feed pawl and detent disengaged and tape removed, feed wheel should rotate freely.

To Adjust

With tape removed from punch mechanism, loosen eccentric locknut and rotate die wheel eccentric shaft until it binds against feed wheel. Back off eccentric until die wheel is just free. Check through 3 or 4 rotations. Keep the indent of eccentric below the horizontal centerline of the stud. Refine adjustment for requirement (1), if necessary, by moving the die wheel toward the feed wheel to decrease the character spacing and away from the feed wheel to increase the character spacing. Tighten nut. Refine FEED PAWL (2.27) adjustment, if necessary.

CAUTION: WITH TAPE REMOVED. MAKE SURE FEED WHEEL AND DIE WHEEL DO NOT BIND. RECHECK REQUIREMENT (1). IF NECESSARY, REFINE.

Note: First through fifth holes in gauge are same size as code holes in tape (0.072 inch diameter). Sixth hole in gauge is larger (0.086 inch). This arrangement allows ± 0.007 inch variation in 5 inches.

2.29 Punch Mechanism (continued)

(For Latest Design see 2.30)

LATERAL AND FRONT TO REAR FEED WHEEL POSITION DETENT (Early Design)

Requirement

With the reperforator operating under power, obtain a tape sample consisting of a series of NULL (BLANK) perforations, by a visual inspection of the perforated feed holes, laterally and front to rear, the indentations of the feed wheel should be fully punched out.

(1) To Adjust (Laterally)

- To meet the lateral requirement, loosen the detent eccentric stud locknut and rotate the detent eccentric clockwise to move the feed wheel perforations towards the leading edge of the feed hole. Rotate the detent eccentric counterclockwise to move the feed wheel perforation towards the trailing edge of the feed hole. Tighten nut. Refine the <u>FEED PAWL</u> (2. 27) adjustment.

(2) To Adjust (Front to Rear)

To meet the front to rear requirement with respect to the reference edge of the tape, loosen the adjusting screw locknut and position the adjusting screw. To move the indentations in the tape away from the reference edge of the tape, move the feed wheel towards the front plate of the punch mechanism by rotating the adjusting screw counterclockwise. To move the indentations in the tape towards the reference edge of the tape, move the feed wheel towards the backplate of the punch mechanism by rotating the adjusting screw clockwise. Tighten nut. Refine the adjustment above to align the lateral indentations of the feed wheel if required.

2.30 Punch Mechanism (continued)

LATERAL AND FRONT TO REAR FEED WHEEL POSITION DETENT (Latest Design)

Requirement

ſ

The indentations punched by the feed wheel should be centrally located between the punched feed holes (gauged by eye) and on same horizontal centerline. The unit must backspace the tape at least 30 characters without losing its point of registration.

To Check

Perforate 6 inches of RY tape. Backspace 30 characters. Reperforate with RUBOUT characters. Code holes must coincide except for first two characters which may be elongated ± 0.010 inch.

To Adjust (Laterally)

Rotate detent eccentric clockwise to move the feed wheel perforation toward the leading edge of the feed hole and rotate eccentric counterclockwise to move the perforation toward the trailing edge of the feed hole. Tighten locknut. Refine FEED PAWL (2.27) adjustment if necessary.

To Adjust (Front to Rear)

Loosen locknut on adjusting screw and rotate the screw counterclockwise to move the indentations in the tape away from the reference edge (rear) of the tape. To move indentations in the tape toward the reference edge of the tape, rotate adjusting screw clockwise. Tighten nut. Refine the lateral adjustment above if necessary.

2.32 Punch Mechanism (continued)

Contraction of the local division of the loc

C

(

16

FEED PAWL SPRING

2.33 Punch Mechanism (continued)

PUNCH SLIDE LATCH SPRING

To Check

Select RUBOUT code combination (12345678). Position rocker bail to extreme left. Strip pushlevers from selecting levers.

Requirement

For one-shaft unit — Min 1 oz---Max 3 oz to start latch moving. For two-shaft unit — Min 3/4 oz---Max 2 oz to start latch moving.

Note: This adjustment is completed on the following page.

2.35 Typing Mechanism (continued)

(D) BELLCRANK SPRINGS - 6 AND 7

To Check

- Select RUBOUT combination (12345678). Rotate mainshaft until function clutch trips.
- (1) Requirement (Bellcrank Spring 6)
 With scale applied vertically to ball end of bellcrank contact operating arm
 Min 2 oz---Max 4 oz to start bellcrank moving.
- Requirement (Bellcrank Spring 7)
 With no. 7 pulse lever spring removed and scale applied vertically to ball end of bellcrank operating arm
 Min 3 oz---Max 6 oz to start bellcrank moving.

SHOULDER CLEARANCE

To Check

Manually select RUBOUT code combination (12345678). Rotate mainshaft until function clutch trips. Manually seat pushbars in detented position. In bar which is nearest left edge of blade, take up play to left and rear, and then release.

(1) Requirement

Clearance between bar and left edge of blade Min 0.015 inch---Max 0.030 inch

(2) Requirement

- Some clearance between right edge of blade and pushbars when play in bars has been taken up to right and released.

(3) Requirement

- With unit in stop position, some clearance between right edge of blade and bars when play in bars has been taken up to right and released.

To Adjust

With mounting screws loosened, position operating blade in elongated holes. Tighten screws.

2.36 Typing Mechanism (continued)

2.37 Typing Mechanism (continued)

FUNCTION BOX

Requirement

With letters pushbar to extreme right and fully detented, RUBOUT code (12345678) selected, punch slides disengaged and function clutched tripped, eliminate play in downward direction, then release. Keep operating blade parallel with no. 2 and no. 3 pushbars and take up function box play in a clockwise direction. The top of the operating blade should be — Min flush---Max 0.020 inch

above top rubout pushbars.

(1) To Adjust

Loosen the two screws mounting function box to spacer posts on front plate and set pry point in center of the cutout.

(2) To Adjust

Loosen the two screws which mount guide to the bracket and position guide to meet above requirement. Tighten screws.

ſ

C

C

2.39 Ribbon Shift and Print Suppression Mechanism (Early Design)

2.40 Ribbon Shift and Print Suppression Mechanism (Early Design) (continued)

(

2.41 Ribbon Shift and Print Suppression Mechanism (Latest Design)

Note: Refer to variable features (Part 3) for additional adjustments applying to print suppression only.

2.42 Ribbon Shift and Print Suppression Mechanism (Latest Design) (continued)

ĺ

6.

2.43 Typing Mechanism (continued)

2.44 Typing Mechanism (continued)

ſ

(

Note: To avoid interference with the lower $\overline{\text{toggle}}$ link clamp screw and the axial corrector link, it may be necessary to move the high part of the corrector bushing above its horizontal center line.

2.45 Typing Mechanism (continued)

Note: Preliminary when no function blades are used.

TOGGLE TRIP ARM

Requirement

Requirement

With NULL (BLANK) combination selected, rotate mainshaft taking up the axial play in type wheel shaft toward the front of the unit. The axial corrector roller should enter first notch of the sector centrally.

To Adjust

With oscillating bail adjusting screw friction tight, select NULL combination. Position oscillating bail by means of its elongated mounting hole so corrector roller enters first notch of the sector when rocker bail moves to its extreme left position. Hold corrector roller firmly in first notch and take up the play in oscillating bail linkage by applying a force to the oscillating bail. Tighten oscillating bail adjusting screw.

2.48 Typing Mechanism (continued)

ĺ

(

CORRECTOR DRIVE LINK (YIELDING) EXTENSION SPRING

AXIAL CORRECTOR (YIELDING)

Requirement

With the NULL code (BLANK) combination selected, function clutch tripped and rocker bail in its extreme left position, the axial corrector roller should seat in the first sector notch and there should be

— Min 0.005 inch

between the ends of the slot and the spring post. Check both sides and check seating in fourth notch (letters selection). Turn the retaining ring that fastens drive link extension to corrector plate to check the minimum requirement.

To Adjust

Loosen two drive link adjusting screws. Position drive link to meet the requirement and retighten the screws.

2.49 Typing Mechanism (continued)

(A) AXIAL SECTOR ALIGNMENT

2.50

(

Typing Mechanism (continued)

2.51 Typing Mechanism (continued)

2.52 Typing Mechanism (continued)

ROTARY CORRECTOR MESH

(1) Requirement

ſ

(

(

With X code combination (--45-78) selected and the pushbars manually detented, the second tooth from the top of the rotary output rack should seat between the lobes of the rotary corrector arm.

To Adjust

-Loosen clamp arm screw and eccentric bushing locknut. With the pivot of the corrector arm to the right of the center of the bushing, position rotary corrector. Tighten bushing locknut. Do not tighten clamp arm screw at this point.

(2) Requirement

In a manner similar to that described above, check engagement of fifth tooth (--34--78), ninth tooth (--4---8), and sixteenth tooth (--3-5---). Refine the adjustment if necessary.

2.53 Typing Mechanism (continued)

position rotary corrector arm finger tight against rotary output rack, and tighten corrector clamp arm screw.

2.54 Ribbon Shift and Print Suppression Mechanism (Latest Design) (continued)

RIBBON CARRIER SPRING

(Front Top View)

2.55 Ribbon Shift and Print Suppression Mechanism (Early Design) (continued)

Note: The following adjustments apply to units with graphics either suppressed or in red (red of red-black ribbon towards rear of unit) when magnet is de-energized.

Note: Refer to Part 3 for additional print suppression adjustments.

Page 56

2.56 Ribbon Shift and Print Suppression Mechanism (Latest Design) (continued)

Note: The following adjustments apply to units with printing of graphics either suppressed or in red (red of red-black ribbon towards front of unit) when magnet is de-energized.

Note: Refer to Part 3 for additional print suppression adjustments.

2.57 Typing Mechanism (continued)

PRINTING LATCH

Note 1: For units with adjustable printing latch mounting bracket.

(1) Requirement

With rocker bail in its extreme left position, manually raise the print hammer accelerator. The clearance between the print hammer accelerator and the printing latch should be

Min some---Max 0.015 inch-

(2) Requirement

With rocker bail in its extreme right position, there should be some overtravel of the print hammer accelerator with respect to the latching surface of the printing latch and some clearance between the print hammer accelerator and the ribbon carrier (or accelerator blocking link if present).

To Adjust

- Position the rocker bail to the extreme right. With the high part of the eccentric to the left, rotate the eccentric so that the clearance between the print hammer accelerator and the ribbon carrier is Approximately 0.065 inch With mounting screws friction tight, position the printing latch mounting bracket to its extreme rear position.
- (2) With the rocker bail to the extreme left, move the printing latch mounting bracket toward the front until the print hammer accelerator just trips. Tighten the mounting screws.
- (3) With the rocker bail to the extreme left, position the trip link eccentric with locknut loose (keeping the high part to the left) until the clearance between the printing latch and the print hammer accelerator is as called for in requirement (1). Tighten eccentric locknut.

Note 2: For units with nonadjustable printing latch mounting bracket use above "(1) Requirement" and adjust according to "To Adjust (3)."

ſ

S.,

2.59 Typing Mechanism (continued)

2.60 Typing Mechanism (continued)

PRINT HAMMER

To Check

(

(

With unit operating under power.

Requirement

Print hammer aligned with type wheel so as to obtain quality printing with some clearance between the pin points on the feed wheel and the side of the print hammer head. —

To Adjust

Position print hammer shaft with its locknut friction tight. Tighten locknut.

<u>Note:</u> It may be necessary to make the <u>TYPE WHEEL</u> (Final) (2.59) adjustment and then refine this adjustment.

(Front View)

2.61 Typing Mechanism (continued) FEED PAWL SPRING RATCHET WHEEL TORQUE SPRING Requirement With rocker bail to extreme right Requirement Min 4 oz---Max 6 oz -Min 1 oz---Max 3 oz to pull feed pawl spring to installed applied tangentially to length. the ratchet wheel to start it to rotate. FEED PAWL 0 0 DRIVE ARM ADJUSTABLE EXTENSION ARM RIBBON **REVERSING ARM** CHECK PAWL ROCKER BAIL DRIVE ARM ADJUSTMENT SCREW-DRIVE ARM To Check Position rocker bail to extreme left. Hold the ribbon reversing arm under lower reversing extension of feed pawl.

(1) Requirement

Clearance between blocking edge of ribbon reverse arm and reversing extension of feed pawl — Min some

(2) Requirement

Clearance should not be so great as to allow feed pawl to feed more than two teeth at a time.

(3) Requirement Feed pawl detented in both its right and left position.

To Adjust

Position drive arm adjustable extension lever with its mounting screw loosened. Tighten screw.

2.62 Typing and Slack Tape Mechanisms

DRIVE ARM SPRING

(

÷.,

3. VARIABLE FEATURES

3.01 Remote Control Noninterfering RUBOUT Tape Feed-Out Mechanism

- Remote Control Noninterfering RUBOUT Tape Feed-Out Mechanism (continued) 3.02
- (A) BLOCKING LATCH TORSION SPRING (B) ARMATURE BACKSTOP Requirement (1) Requirement With armature in unoperated position With armature in operated position, and drive bail roller on high part of rotate mainshaft until drive bail its cam. roller is on high part of its cam. Min 15 grams---Max 40 grams The drive bail should engage the to start blocking latch moving. blocking bail by at least 2/3 of its thickness. PRY POINT-CLAMP SCREWS. (2) Requirement Min some---Max 0.006 inch between blocking latch and nonrepeat latch. To Adjust With the armature backstop mounting DRIVE BAIL screws friction tight, position by ROLLER means of pry point. Tighten screws. LATCHLEVER-ARMATURE · BLOCKING LATCH BLOCKING BAIL NONREPEAT $\langle \mathbf{I} \rangle$ LATCH CLAMP SCREW NONREPEAT LEVER SPRING RELEASE LEVER. (C) NONREPEAT LEVER SPRING DRIVE BAIL ROLLER Requirement With armature in unoperated position and drive bail roller on high part of its cam Min 6 oz---Max 9 oz to pull spring to installed length. (D) BLOCKING BAIL SPRING Requirement With armature in unoperated position and drive bail roller on high part of its - TUIMIN cam. (E) RELEASE LEVER Min 3 oz---Max 5 oz-Requirement to pull spring to installed length. With armature in operated position,

rotate mainshaft until drive bail roller is in indent of its cam. Clearance between release lever and latchlever. Min 0.010 inch---Max 0.025 inch

To Adjust

With clamp screw friction tight, position release lever. Tighten screw.

3.03 Remote Control Noninterfering RUBOUT Tape Feed-Out Mechanism (continued)

RELEASE LEVER SPRING

To Check

l

(

Trip selector clutch. Rotate mainshaft until reset cam follower is on peak of reset bail cam. With spring hook, hold front ratchet check pawl away from release lever.

3.04 Remote Control Noninterfering RUBOUT Tape Feed-Out Mechanism (continued)

Note: Proceed to FRONT RATCHET STOP POSITION (3.05) adjustment.

3.05 Remote Control Noninterfering RUBOUT Tape Feed-Out Mechanism (continued)

Note: See REAR CHECK PAWL (3.04) adjustment before making this adjustment.

ά.
3.06 Remote Control Noninterfering RUBOUT Tape Feed-Out Mechanism (continued)

(C) RATCHET RETURN SPRING

(A) RELEASE ARM

(

Ĺ

Ĺ.

(1) Requirement

(2) Requirement With unit in stop position, the surface

3.08 Remote Control Noninterfering RUBOUT Tape Feed-Out Mechanism (continued)

(A) DRIVE ARM SPRING

Note: See that the reset bail is tripped.

To Adjust

With clamp screw loosened, position drive arm adjusting plate by means of its pry point. Tighten screw.

3.09 Remote Control Noninterfering RUBOUT Tape Feed-Out Mechanism (continued)

(B) ADJUSTING LEVER

(

3.10 Remote Control Noninterfering RUBOUT Tape Feed-Out Mechanism (continued)

3.11 Remote Control Noninterfering RUBOUT Tape Feed-Out Mechanism (continued)

When operating under power, unit should feed out correct length of tape.

To Adjust

(

(

(

With spring post friction tight. Position adjusting plate. Tighten spring post.

- 3.12 Remote Control Noninterfering RUBOUT Tape Feed-Out Mechanism (continued)
- (B) RESET BAIL LATCH SPRING

- (A) RESET BAIL LATCH
 - To Check (Vertical Clearance) Select RUBOUT code combination (12345678). Rotate mainshaft until function clutch trips and punch slides are to extreme left. Manually set up the NULL code (BLANK) combination in selector. Rotate mainshaft until punch slides are just latched.
 - (1) Requirement
 - —— Min 0.008 inch---Max 0.020 inch between reset bail and reset bail latch.
 - To Adjust

With mounting screws loosened, position mounting plate by means of pry points. Tighten screws.

 (2) Requirement (Horizontal Clearance) With clutches disengaged,
Min 0.005 inch---Max 0.020 inch between reset bail and reset bail latch.

To Adjust

With a clamp screw loosened, position bail latch by means of its pry points so its latching surface is approximately at midpoint in thickness of the reset bail. Tighten screw.

(2) To Check

Select RUBOUT code combination (12345678). Rotate mainshaft until function clutch trips. Manually set up the NULL code (BLANK) combination. Rotate mainshaft to stop position.

Requirement

Punch slides latched by punch slide latches.

To Adjust Refine requirements (1) and (2) above.

(C) RESET BAIL TRIP LEVER SPRING

To Check

Disengage both clutches. Trip function clutch by pivoting main trip lever counterclockwise. Hold reset bail trip lever up against reset bail.

Requirement

— Min 18 oz---Max 24 oz to pull spring to installed length.

3.13 End of Feed-Out Contacts for Noninterfering RUBOUT Tape Feed-Out Mechanism

End of Feed-Out Contacts for Noninterfering RUBOUT Tape Feed-Out Mechanism (continued) 3.14

Note: See preliminary contact adjustments, 3.13.

- (D) CONTACT ASSEMBLY MOUNTING BRACKET
 - (1) Requirement (Unit in stop position) When normally open contacts are used and release lever is above lower step of latchlever Min 0.005 inch

visible overtravel of swinger after it makes contact with normally open contact.

(2) Requirement

When normally closed contacts are used and release lever is on upper step of latchlever, the normally closed contacts should be closed and bail should not exert any force against swinger insulator button.

To Adjust

Position contacts with bracket mounting screws loosened. Tighten screws.

(E) TAPE LENGTH ADJUSTING PLATE

(1) Requirement

With unit in stop position and release lever on lower step of latchlever, manually advance ratchets so that feed pawl is in the front tooth preceding trip off (not in deep tooth of rear ratchet). Hold bail lightly against latchlever extension Min 0.002 inch---Max 0.020 inch clearance between adjusting plate and bail.

- (2) Requirement When operating under power, unit should feed out correct length of tape.
- To Adjust Position adjusting plate with spring post loosened. Tighten spring post.

Note: Feed pawl in extreme left position and adjusting plate in dotted position for adjustment (B), CONTACT SPRING GAP (Preliminary) only.

3.15 Manual and Power Drive Backspace Mechanism

3.16 Manual and Power Drive Backspace Mechanism (continued)

3.18 Power Drive Backspace Mechanism (continued)

3.19 Power Drive Backspace Mechanism (continued) (Nonadjustable Backspace Magnet Assembly)

Note 1: For early design adjustable magnet assembly see 3.16.

(A) ARMATURE SPRING (Latest Design)

Requirement

(

Ĺ

The armature extension should engage the latch by approximately its full thickness when the magnet is de-energized.

To Adjust

Position the magnet assembly by means of its mounting screws. Tighten screws.

(D) FINAL MANUAL OR POWER ADJUSTMENT (Latest Design)

Note 2: This is the final adjustment for all backspace mechanisms, manual or power drive, regardless of the type of unit.

(1) Requirement

With tape in the unit, place the feed wheel shaft oil hole in its uppermost position; operate the backspace mechanism once. The ratchet wheel should be backed one space into a fully detented position.

Note 3: A fully detented position is defined as: With the detent roller in contact with the ratchet wheel the punch unit feed pawl should engage the first tooth below the horizontal centerline of the feed wheel ratchet with no perceptible clearance.

(2) Requirement

With the unit operating under power, perforate approximately two inches of tape with the RUBOUT combination selected. Backspace twelve characters in succession with the unit still under power. Again perforate approximately two inches of tape with the RUBOUT combination selected. Clipping of the code holes should be held to a minimum and should not exceed more than 0.005 inch, as gauged by eye.

To Adjust

On manual operated backspace mechanisms refine the <u>FEED PAWL ECCENTRIC</u> (<u>Preliminary</u>) (3.16) adjustment. On backspace mechanisms equipped with power drive, loosen the arm adjusting screw and position the adjusting plate. Tighten the arm adjusting screw.

3.20 Power Drive Backspace Mechanism (continued)

3.21 Print Suppression Mechanism

(

3.22 Print Suppression Mechanism (continued)

Note 1: Refer to Part 2 for preliminary adjustments in common with ribbon shift adjustments in all units.

Note 2: The following adjustment pertains to units that block the ribbon carrier when the shift magnet armature is held attracted.

ACCELERATOR BLOCKING LINK (Early Design)

Requirement

Function clutch tripped and mainshaft rotated until print hammer trip lever just touches print release latch. There should be

- Min 0.020 inch---Max 0.030 inch

clearance between the upper surface of the print suppression link and the lower surface of the print hammer accelerator.

To Adjust

Position the print suppression link all the way to the rear of the slots on the ribbon carrier. Position link in vertical direction with mounting screws loosened to meet requirement. Tighten screws.

3.23 Print Suppression Mechanism (continued)

CONTROL LEVER (Manual)

(1) Requirement

There should be a clearance of

Min 0.015 inch-

between the print suppress lever and the print hammer when the lever extension is in the print position (down).

(2) Requirement

When the lever extension is in the nonprint position (up), the blocking extension should extend across the full thickness of the print hammer with a clearance of

Min 0.015 inch

at the side of the print hammer.

To Adjust

Loosen the eccentric bushing mounting nut and position the bushing until the requirements are met. The high part of the eccentric should be down and to the right as viewed from the rear of the unit. Tighten nut.

HIGH PART OF ECCENTRIC

PRINT

3.24 Signal Bell and EOT Contacts

Note 1: The following adjustments should be made prior to installing the contact bracket assembly on unit.

(A) NORMALLY OPEN CONTACT GAP

Note 2: The following adjustments should be made after the contact bracket assembly is mounted to the unit.

Page 88 88 Pages