NAVELEX 0101,105

NAVAL SHORE ELECTRONICS CRITERIA

SATELLITE COMMUNICATION SYSTEMS

DEPARTMENT OF THE NAVY NAVAL ELECTRONIC SYSTEMS COMMAND WASHINGTON , D.C. 20360

JUNE 1970

LIST OF EFFECTIVE PAGES

Total number of pages in this manual is 73 consisting of the following:

Page	Effective
Number	Date
Title	June 1970
А, В	June 1970
Foreword	June 1970
i through iii	June 1970
1-1 through 1-8	June 1970
2-1 through 2-23	June 1970
3-1 through 3-19	June 1970
A-1 through A-5	June 1970
B-1 through B-5	June 1970
C-1 through C-2	June 1970
FO 3-1 through FO 3-4	June 1970

JUNE 1970

.

RECORD OF CHANGES

.

FOREWORD

The purpose of this book is twofold: to present general indoctrinational information for those unfamiliar with the field of satellite communications and to provide general technical installation criteria for Field Technical Authority representatives.

Although "television via satellite" is familiar to everyone, a knowledge of some of the basic fundamentals of satellite communication systems may prove helpful to those involved in planning for and technically supervising the installation of the earth terminal components of specific satellite communication systems.

All of the present and planned military operational satellite communication systems are sponsored by the Department of Defense and, as such, are designed for tri-service use. The Secretary of Defense assigned responsibility for procurement of all land-based earth terminals to the Department of the Army. All land-based terminals are designed to be mobile and air-transportable, and are housed either in vans or shelters.

The technical installation criteria included in this book are necessarily general. A Department of Defense policy precludes removal of earth terminal equipments from the original vans or shelters so that the terminals will be maintained in a transportable condition. Within the above policy limitations, Department of the Navy policy prescribes semipermanent installation of all Navy-operated terminals.

No attempt has been made in this book to establish complete installation criteria for any particular earth terminal. A separate Base Electronic System Engineering Plan (BESEP) for each installation should be prepared and submitted for approval. This plan should be prepared using the general criteria contained in this book and detailed information given in specific equipment technical manuals, with due consideration of the expected environmental conditions of the local site.

TABLE OF CONTENTS

Chapter	Page
Record Forewor Table of List of List of	Effective Pages A of Changes B rd Foreword rd Foreword f Contents I Illustrations I Tables I Foldouts I Iii
1 INTF	RODUCTION
1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8	Why Satellite Communications1-1Simplified Description1-1The Role of Satellite Communications1-2Types of Communication Service1-3Typical Applications1-3Advantages of Satellite Communications1-4Limitations1-5Satellite Projects1-7
2 DES	CRIPTION OF COMMUNICATION SATELLITE SYSTEM
2.1 2.2 2.3 2.4 2.5 2.6 3 TEC	Essential Basic System Components2-1Orbit Descriptions and Selection Criteria2-1Satellite Characteristics2-7Earth Terminal Characteristics2-13Satellite Acquisition and Tracking2-14General Technical Summary2-22
3 TEC 3.1 3.2 3.3	Introduction
APPEN	DICES
A Pres B Site	urvey Data

-

LIST OF ILLUSTRATIONS

Number	Title	Page
1-1	Satellite Communication System	1-2
1-2	Zone of Mutual Visibility	1-6
2-1	Elliptical Satellite Orbit	2-1
2-2	Inclined Satellite Orbit	2-2
2-3	Effect of Orbit Plane Inclination on Satellite Coverage	2-4
2-4	Illumination from a Synchronous Satellite	2-5
2-5	Worldwide Synchronous Satellite System Viewed from above	
	North Pole	2-5
2-6	Phase II DSCS Satellite	2-8
2-7	Spin-Stabilized Satellite Antenna Pattern	2-10
2-8	Spin-Stabilized Satellite Controls	2-11
2-9	IDCSP Satellite.	2-12
2-10	AN/FSC-9 Satellite Earth Terminal	2-15
2-11	AN/MSC-46 Antenna and Pedestal	2-16
2-12	AN/TSC-54 Satellite Communication Terminal.	2-17
3-1	Antenna Elevation as a Function of Azimuth	3-3
3-2	Rise and Set Azimuths - Northern Latitude	3-5
3-3	Rise and Set Azimuths - Southern Latitude	3-6
3-4	Typical Site Layout for Three Earth Terminals	
	(Northern Hemisphere)	3-7
3-5	Vertical Cross Section of Radiation Hazard Volume for Power	
00	Density Level Contour (10 mW/cm ²) for Satellite Earth	
	Terminal AN/MSC-46 \cdots \cdots \cdots \cdots	3-11
3-6	Vertical Cross Section of Radiation Hazard Volume	
3-0	for Power Density Level Contour (10mW/cm ²) for Mobile	
	Satellite Earth Terminal AN/TSC-54	3-11
3-7	Typical Foundation for an AN/TSC-54 Antenna Pedestal	3-14
3-8	Typical Foundation for Radome for an AN/TSC-54 Antenna .	3-15
3-8 3-9	Satellite Communications Circuit.	3-17
	Types of Cable Runs	3-19
3-10	Types of Cable Rulls	0 10

LIST OF TABLES

Number	Title	Page
2-1	Principal Characteristics of DSCS Earth Terminals • • • •	2-18
3-1	Dimensions of a Typical Site Layout for 1, 2 and 3 Earth Terminals	3-4
3-2	Design Characteristics of AN/MSC-46 and AN/TSC-54 Earth Terminals	3-9

LIST OF FOLDOUTS

Number	Title	Page
	Typical Foundation for AN/MSC-46 Antenna Pedestal Typical Foundation for Radome for AN/MSC-46 Antenna Typical Earth Terminal Circuit Distribution	3-3